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This paper presents a comparative study on the applications of general regression neural network (GRNN)

models and conventional Box–Jenkins time series models to predict the maintenance cost of construction equip-

ment. The comparison is based on the generic time series analysis assumption that time-sequenced observations

have serial correlationswithin the time series and cross correlationswith the explanatory time series. BothGRNN

and Box–Jenkins time series models can describe the behavior and predict the maintenance costs of different

equipment categories andfleetswith an acceptable level of accuracy. Forecastingwithmultivariate GRNNmodels

was improved significantly after incorporating parallel fuel consumption data as an explanatory time series. An

accurate forecasting of equipment maintenance cost into the future can facilitate decision support tasks such

as equipment budget and resource planning, equipment replacement, and determining the internal rate of

charge on equipment use.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Managing themaintenance cost of construction equipment is an im-

portant task for contractors in the construction industry, especially for

those engaged in heavy construction work with extensive equipment

use. Construction equipment provides the functions of earthmoving,

lifting, and logistic supplies and is subject to various types of mainte-

nance work, which include preventive maintenance, predictive mainte-

nance, and running repairs, to stay in normal working conditions.

Peurifoy etc. emphasized that “the cost of repairs is normally the largest

single component of machine cost, the repair cost constitutes 37% of

machine cost over its service life” [1], and Vorster [2] pointed out that

costs of repair part and labor make up between 15% and 20% percent

of the total equipment budget, and is the most difficult to estimate, de-

cisions regarding repair costs affect the hourly rate as well as the eco-

nomic life of a machine. Maintenance costs can significantly change

depending on equipment characteristics, the maintenance strategies of

contractors,working conditions, and operator skills,whichbring difficul-

ty to estimating equipment ownership and operating cost for manage-

ment decisions. One crucial yet challenging management activity is

predicting the maintenance costs of equipment at various levels of the

equipment-owning organization. An accurate prediction of equipment

maintenance costs in the planning horizon facilitates budget planning

for equipment operations, maintenance resource allocations, equipment

repair, overhaul, and replacement decisions. Themodeling of equipment

maintenance costs can also reveal the dynamic behavior of equipment

maintenance costs as well as their factors, on which management deci-

sions can bemade to interfere proactivelywith and predictmaintenance

cost variations.

Traditionally, equipment owners in the construction industry (i.e.,

contractors, government organization, and equipment rental compa-

nies) predict the maintenance costs of various construction equipment

based primarily on past experience, for example, the maintenance cost

of a piece of equipment can be estimated from the historical data of

similar equipment under similar conditions. Adjustment factors can be

applied to the benchmark values to account for the impact from various

factors related to equipment (age, heath conditions, maintenance

history, etc.), environment (workloads, working conditions, etc.), and

organization (equipment management policy, business nature, etc.).

However, judgmental forecasting of future maintenance costs based on

experience, intuition andpersonal knowledge is unreliable due to the in-

herent random nature of equipment failures. With no consensus on the

methodology among industrial practitioners, the statistical modeling of

themaintenance cost of construction equipment provides a better quan-

titative approach to predict maintenance costs in the planning horizon.

Previous research in this area,which has commonly employed linear

or nonlinear regression by ordinary least squares, has been conducted

by Manatakis and Drakatos [3], Edwards et al. [4–6], Edwards and Holt

[7], and Gillespie and Hyde [8], among others. Apart from these conven-

tional regressionmodels, the use of the time series approach in this area

or in related fields gives further insights into obtaining a good model of

themaintenance costs of construction equipment. Moore [9] found that
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the maintenance cost time series has an inherent autocorrelation

among observed cost series. Edwards et al. [4] utilized the centered

moving average to analyze the time series of the maintenance cost of

construction equipment and isolated its trend of changes. Zhao et al.

[10] established an autoregressive moving average (ARMA) model,

also known as the Box–Jenkins method [11], to model equipment fail-

ures based on transformed data. Durango-Cohen [12] adopted the

ARMA with exogenous input model (ARMAX) to model the perfor-

mance behavior of transportation facilities with the application of the

Kalman filter. All these attempts have been made to describe and pre-

dict the behavior of equipment performance and maintenance cost by

using time series forecasting models and results of various degrees of

accuracy were obtained.

Although time series analysis has been traditionally conducted using

Box–Jenkins models, artificial neural networks (ANN) have also been

used for time series modeling and analysis because of its capability to

identify the complex underlyingnonlinear relationships among time se-

ries data. The use of ANN inmodeling and in predicting themaintenance

cost of construction equipment has beenpresented in a number of relat-

ed research work. Edwards et al. [5] used multilayer perceptron (MLP)

to predict future values of the maintenance cost of construction plants

and found that MLP neural networks have better performance than

that of other modeling algorithms such as multiple regression. Hong

and Pai [13] modeled and predicted engine reliability by using various

forms of models, which include general regression neural networks

(GRNNs), support vector machine, and ARMA, and compared their per-

formance in predicting engine reliability metrics.

Following Moore [9], who found that the time series of equipment

maintenance cost has autocorrelations among observed data, this

study aims to develop and compare time series models for a cost analy-

sis of construction equipment maintenance by using both traditional

Box–Jenkins models and GRNN, a machine learning-based forecasting

model. The study first presents a univariate modeling of the time series

of maintenance cost by using ARMA and GRNN to predict the mainte-

nance cost of construction equipment based on its historical observa-

tions. The impact of fuel consumption on the maintenance cost

modeling of both traditional vector autoregression (VAR) and GRNN is

then investigated to evaluate the performance of forecasting models

after the incorporation of this parallel explanatory variable. Finally,

the performance of traditional time series models and that of GRNN

models is compared, and their advantages and disadvantages are then

discussed.

2. Literature review

The maintenance cost of construction equipment includes the

following: (1) regularmaintenance, which refers to the change of lubri-

cants, coolants, and filters and routine check on equipment conditions;

(2) predictive maintenance, where the equipment is maintained or

repaired based on need or imminent failure conditions; and (3) correc-

tive maintenance or emergency repairs, where the equipment must be

repaired and restored to normal working conditions after an unexpect-

ed breakdown during equipment operations, or routine equipment

inspections.

An accurate forecasting model on maintenance costs is critical to

various decisions on equipmentmanagement, such as allocation, repair,

replacement, and retirement, because equipment maintenance costs

constitute a major fraction of the total life cycle cost of a piece of equip-

ment. Therefore, considerable research has been devoted to the model-

ing of equipmentmaintenance costs in the construction,manufacturing,

military, and logistics industries.

A number of maintenance cost forecasting models for construction

equipment were developed by Edwards et al. [4–7], who used multiple

regression techniques to model maintenance costs by incorporating

several exogenous inputs,which includemachineweight, type of indus-

try, and company attitude toward predictive maintenance. All three

variables are important, but operator skill is not significant to be an ex-

planatory factor. In another research by Edwards et al. [4], a combina-

tion of time series analysis and cubic equation estimation was used in

the model, in which time is an independent variable, to model the cu-

mulative maintenance cost of construction equipment. In yet another

research, Edwards et al. [5] studied the performance of models based

on neural networks and multiple regression and found that neural net-

works provide better performance with smaller variance of residuals.

The researchers concluded that both types of models can successfully

describe and predict maintenance costs, and they suggested the use of

neural networkmodels and the provision of information for the assess-

ment ofmaintenance policy. Edwards andHolt [7] introduced a stochas-

tic model that uses generated random numbers to predict the cost of

future maintenance events.

Studies have also been conducted on the life cycle management and

operational cost prediction of construction equipment. Gillespie and

Hyde [8] conducted statistical regression of the life cycle cost of heavy

equipment by using labor cost, the maintenance cost of parts, and fuel

cost for equipment operations. The logarithmic model of life cycle cost

as a function of fuel cost shows satisfactory goodness of fit, andmachine

age does not predict the life cycle cost. On the other hand, the fuel cost of

equipment operations can achieve a better fit to the cost observation

data.

Mathew and Kennedy [14] developed a theoretical framework for

optimal equipment replacement to achieve a maximum net benefit

from the equipment by assuming that the failure rate is essentially in-

creasing. Manatakis and Drakatos [3] proposed a predictive model of

operating cost as a function of operatinghours, engine capacity, andma-

chine power of the dump truck. Edwards et al. [15] developed a linear

regression model for construction equipment downtime cost by using

machine weights as an independent variable.

Moreover, extensive research on themaintenance and life cycle cost

of plant and equipment, as well as properties from other industries

could also provide several useful insights into themodeling of themain-

tenance cost of construction equipment. Morcous and Lounis [16] de-

veloped a genetic algorithm-based approach to optimize the life cycle

maintenance cost of an infrastructure network. Popova et al. [17] present-

ed a multiple regression model for the behavior of the total maintenance

cost of a nuclear power plant by using variables such as the number of

previous repairs and the level of risk for loss of electrical generation. Li

et al. [18] proposed a generalized partial least squares regression model

for warship maintenance cost prediction with relatively few samples.

3. Traditional time series analysis

Traditional time seriesmodelingmethodsmainly rely on linear rela-

tionships among successive observations. The Box–Jenkins or ARMA

models are expressed in the following form:

yt ¼ Cþ ϕ1yt−1 þ ϕ2yt−2 þ…þ ϕpyt−p

� �

ð1Þ

where

yt Modeled value

yt-i, yt-j Historical observed values

ϕi Autoregressive parameters, i = 1 ~ p

θj Moving average parameters, j = 1 ~ q

εt Error term

C Constant.

The former part involves previous values of times series, and is known

as the autoregressive part. This part examines the lagged relationship
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betweenyt and its earlier historical values. The latter involves error terms,

and is known as the moving average part. This part reflects the relation-

ship between yt and lagged error terms.

Only historical observations of the time series are used as input for

prediction in Eq. (1) and it is defined as a univariate time series

model. Multivariate time series models can be used with the inclusion

of explanatory time series in the model to account for the influence

from independent variables, which have a cause–effect relationship

with the target variable. For example, VAR is a typical multivariate

time series model expressed as:

Yt ¼ Cþ ϕ1Yt−1 þ ϕ2Yt−2 þ…þ ϕpYt‐p þ εt ð2Þ

where Yt is a k × 1 vector with k observations at time t of the k time se-

ries, εt is the error term, andϕi is the linear autoregressive parameter. In

this form, VAR directly captures the linear relationships of Yt with the k

time series as well as earlier observations within each time series.

Statistical tests are required to identify the nature of the time series

modeled so that these traditional models can be implemented. More-

over, the transformation of raw time series data may be necessary to

make them stationary (i.e., time series data have a constant mean and

variance). The conventional test for the existence of unit root (non-sta-

tionary nature) in a time series is the augmented Dickey–Fuller test

(ADF) [19]. ADF examines the existence of a unit root by estimating a

linear model with the first difference value as modeled value as the re-

sponse variable, and the value of the time series at time t-1 and the pre-

vious first difference values as input variables. The hypothesis is then

statistically tested, that is, ADF statistics measure the estimated coeffi-

cient for value at time t-1 over the standard error. This value is usually

a negative number, and the more negative this number becomes, the

more likely that the hypothesis of the existence of the unit root is

rejected. If the times series is non-stationary, and the k number of

differencing is required to make the time series stationary, then k unit

root(s) exist, and the order of integration is expressed as I(k).

For the multivariate time series model VAR, themultiple time series

in themodel need to be tested for co-integration apart from the station-

arity of the individual time series. Co-integration of two or more non-

stationary time series means the stationary linear combination of

these time series. Co-integrating time series have a long-term equilibri-

um relationship, but the differencing or de-trending of non-stationary

time series tends to remove the long-term equilibrium relationship be-

tween the time series. In this case, the detection of co-integration

should be tested for the time series, and the simple VAR alternative

should be used instead. However, if the time series are stationary, co-

integration does not need testing because the long-term relationship

is not removed. The Johansen procedure [20], one of the most common

methods, can be used as a test for co-integration. A comprehensive re-

view of the Johansen procedure was done by Johnes [21]. The Johansen

procedure provides two likelihood ratio tests, namely, the trace test and

the maximum eigenvalue test. Both tests involve hypothesis testing,

which examines the number of co-integrating vectors that indicate

the number of co-integrated time series in the model. If a co-

integrating relationship is found among the time series in the model,

the vector error correctionmodel should be used instead of simple VAR.

Information criteria are commonly used to test iteratively the possi-

ble structure of time series models so that the best model with good fit

but less complexity is obtained, and to identify the suitable structure of

ARMA and VAR models, that is, the autoregressive order of ARMA and

VAR and the moving average order of ARMA as model parameters. For

example, the Akaike information criterion (AIC) (Akaike [22]), derived

from information entropy, measures the accuracy of candidate model

forms and, in the meantime, includes a penalty term that increases

with the number of parameters included. AIC is given as

AIC ¼ 2k−2 ln Lð Þ ð3Þ

where k is the number of parameters and ln(L) is the natural logarithmic

value of the maximum likelihood of the candidate model. The maxi-

mum likelihood can be approximated, for example, by the following ex-

pression (Chatfield [23]):

L ¼ N ln
S

N

� �

ð4Þ

where N is number of observations and S is the residual sum of squares

of within-sample model validation. Theminimum value of AIC from the

candidate model forms gives the most suitable structure for the ARMA

and VAR models.

4. General regression neural network

4.1. Overview

GRNN is a neural network model proposed by Specht [24] to postu-

late nonlinear relationships between a target variable and a set of inde-

pendent explanatory variables. The principle of GRNN is shown in Fig. 1.

The target value of the predicted variable is obtained by taking the

weighted average of the values of its neighboring points. Close neigh-

bors have higher impact on the target value to be predicted, whereas

distant neighbors have little influence. The level of influence (weight)

of neighboring points is evaluated by a radial basis function (RBF),

such as the Gaussian distribution function, with distance as input and

probability value as output: weight = RBF(Distance). The sigma value

(standard deviation) of the Gaussian function determines the influence

of distant points on the target variable. A larger sigmamakes the Gauss-

ian distribution curve more spread (approaching the scenario of taking

the average of all point values as the predicted value), whereas a small

sigma makes the curve more compact (approaching the scenario of

taking the value of the closest neighbor as the predicted value). In a

practical use of the GRNNmodel, an optimum value of the sigma is de-

termined through optimization.

The advantages of the use of GRNN include its accuracy, ability to

model from a relatively small data set, and ability to handle outliers.

As a data learning algorithm, GRNN is used to explore the relationship

among data in a time series, relevant time series, and intervention var-

iables as follows:

Yt ¼ f

Yt−1;Yt−2; :::::;Yt−n

X1 t−1ð Þ;X1 t−2ð Þ; :::::;X1 t−n1ð Þ

X2 t−1ð Þ;X2 t−2ð Þ; :::::;X2 t−n2ð Þ

::::

0

B

B

@

1

C

C

A

ð5Þ

Point to be forecasted takes weighted sum of its

neighboring points P1, P2 and P3 based on

their Radial Basis Function values
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Fig. 1.Weighted sum of redial basis functions for predicting the target variable.

32 H. Yip et al. / Automation in Construction 38 (2014) 30–38

https://sina-pub.ir


where

Yt Current observation

Yt-i Previous n observations, i = 1,2,…,n

Xi Related time series or invention variable i

Xi (t-j) Historical observations of explanatory time series or inven-

tion variable at (t-j)

ni Correlated lagged values of related time series or invention

variable i.

Eq. (5) assumes that the current value of observation is related to its

previous n observation (autoregression), and thehistorical observations

of related variables (previous ni observations for variable Xi). The actual

nonlinear relationship can be inferred using GRNN. The architecture of

GRNN is shown in Fig. 2. The GRNN model has four layers: (1) input

layer (each input variable is a neuron in the input layer); (2) pattern

layer (after receiving values from the input layer, each neuron in the

pattern layer processes themapping between input vectors and the out-

put of one pattern based on the Euclidian distance from its neighboring

points and the smoothing parameters, as shown in Fig. 1); (3) summa-

tion layer (takes the sum of weighted target values from each observed

case and the sum of weights); and (4) output layer (takes the weighted

average of all observed cases). The learning process can be explained

below:

(1) The observed time series data (such as fuel consumption) along

with related parallel observations (such as eco-operator index

and PM event indicator) are represented. Current fuel consump-

tion is related to historical observations and relevant factors.

Each input neuron also standardizes the range of values of an

input variable by subtracting the median and dividing the differ-

ence by the interquartile range.

(2) The optimum sigma value for the training data set is determined

using the leave-one-outmethod, whichmeasures error by build-

ing a model with all training rows except for one and then eval-

uating the error through the excluded row. This procedure is

repeated for all rows, and finally, the error is averaged. The opti-

mum sigma value is chosen to minimize model prediction error

[25].

(3) The Euclidean distance is used as the distance function from

point X to observed point Xi.

Di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X−Xið ÞT X−Xið Þ

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

X−Xið Þ
2

v

u

u

t ð6Þ

(4) The weighted sum of all observed points is determined (more

weights are assigned if distance Di is small)

sw ¼
X

n

i

yie

−D
2
i

2σ2

� �

ð7Þ

(5) The sum of weights from all observed n points is determined as

ss ¼
X

n

i

e

−D2
i

2σ2

� �

ð8Þ

(6) The predicted value of the target variable can be derived by tak-

ing theweighted sum divided by the sum of the weights of n ob-

served points:

y ¼
sw
ss

: ð9Þ

5. Problem statement

Maintenance cost forecasting is an important task for contractors in

managing an equipment fleet. The accurate prediction of maintenance

cost based on historical records provides a basis for budget planning,

equipment replacement, tender price estimation, etc. In this study, a

road building and maintenance contractor own a large fleet comprised

with over 1000 pieces of engineering vehicles and heavy equipment.

The contractor estimates the equipment maintenance cost mainly by

judgmental forecasting based on historical data at various levels

(e.g., organizational, or subordinate, equipment group) with appropri-

ate adjusting factors applied. Modeling the maintenance costs of con-

struction equipment enables the contractor to understand better the

Maintenance Cost

Month -1

Maintenance Cost

Month -2

Maintenance Cost

Month -p

Fuel consumption

Month -1

Input layer Pattern layer Summation

layer

Output

layer

Fuel consumption

Month -2

...

...

Fig. 2. General regression neural network architecture (-1,-2,..,-p denote the lag number of lagged variables of an observation).
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underlyingmechanism of cost data variations and to forecast using his-

torical data in the equipment management information system, along

with the equipment usage plan. Forecasting is performed for different

equipment groups and units at different organizational levels:

(1) Equipment groups: the monthly average maintenance costs of

individual equipment groups, such as dump trucks and wheel

loaders

(2) Equipment fleet at divisional level: the monthly total mainte-

nance costs of equipment fleet in operational divisions.

Different models are established for cost forecasting on selected

equipment groups and operational divisions of the contractor and com-

pared in terms of complexity, interpretability, and forecasting accuracy

to identify appropriate models for maintenance cost forecasting in dif-

ferent scenarios.

6. Modeling and analysis of construction equipment

maintenance cost

6.1. Data

Data for the maintenance cost of construction equipment modeling

are collected from the contractor's maintenance database that is shared

across different operational divisions since 1998. The database provides

raw data of monthly total maintenance cost for modeling. The total

maintenance cost is represented by the sum of preventivemaintenance,

work ordermaintenance, and running repair costs, all three ofwhich in-

clude their respective labor and repair parts cost. Majority of the total

maintenance cost comes from running repair cost, which generally ac-

counts for more than 90% of the sum, whereas preventive maintenance

and work order maintenance costs constitute the remaining part. In

each maintenance event, parts cost is, on average, about two to three

times the labor cost. Apart from the totalmaintenance cost, the database

contains additional information on the fuel consumption of construc-

tion equipment. Fig. 3 shows an example of the co-movement behavior

of the time series of equipment maintenance cost and of fuel consump-

tion. The time series of maintenance cost of each equipment group and

divisional equipment fleet is extracted from the database. In this study,

the dump truck and wheel loader (1–2 cubic yards) were selected as

equipment categories for analysis, whereas the selected fleets are

from two individual operational divisions (Fleets A and B). Therefore,

this study compares the maintenance cost behavior of two equipment

groups and fleets at two divisions: the former consists of the same

class of equipment in a division, whereas the latter constitutes mixed

types of equipment in a division. For individual equipment groups, the

average maintenance cost per unit, instead of the total maintenance

cost of the equipment group, is used to overcome the problemof change

in equipment composition with yearly equipment procurement and

disposal. The average maintenance cost of equipment in a group is

obtained after dividing the monthly total equipment maintenance cost

by the number of equipment in service. For divisional equipment

fleet, the total maintenance cost is modeled because the total mainte-

nance cost of a large fleet is insensitive to the changes in equipment

composition.

6.2. Stationarity test

In traditional time series analysis, time series data are presumed sta-

tionary with stable mean and variance. These criteria are particularly

important to linear models, such as ARMA and VAR. Thus, for ARMA

and VARmodel building, diagnosis of the stationarity of the time series

is an important step in time series analysis, whereas for GRNN, no

differencing is necessary on the time series because the neural network

is able to map a non-stationary time series (Kim et al. [26]). This study

applies ADF to examine the existence of unit root(s) in the time series

of maintenance cost. The lag length used in the ADF test is determined

by the AIC. Table 1 shows the results of the t-statistic of the four time se-

ries ofmaintenance cost and their corresponding time series of fuel con-

sumption. All time series in this study have no unit roots. As a result, no

differencing or de-trending is required to transform the time series.

6.3. Univariate time series modeling

For univariate models for the maintenance cost of construction

equipment, ARMA and GRNN are used, and their respective lag orders

are determined so that they sufficiently reflect the influence from

earlier observations.

For ARMA, both autoregressive and moving average orders have to

be determined. AIC is used in this study for lag determination. For

autoregressive order p and moving average order q, the maximum of

both is 12 (one year; i.e.,0 b p b 12 and 0 b q b 12). Each combination

of p and q in ARMA is tested against AIC, and themodel with a particular

Fig. 3. Co-movement behavior of maintenance cost and fuel consumption of construction equipment.
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combinationwith the smallest AIC value is selected as themost suitable

model structure for ARMA for maintenance cost modeling. For GRNN,

lag selection follows the autoregressive order based on AIC. Table 2

summarizes the autoregressive and moving average orders for ARMA

models and the lag length for GRNN models.

6.4. Multivariate time series modeling with fuel consumption

Apart from the lagged relationship from the given time series, other

factors are considered to have significant influence on the future values

of the maintenance cost of construction equipment. Gillespie and Hyde

[8] observed that fuel expense is crucial to themodeling of the life cycle

cost of heavy equipment. However, one drawback of the use of fuel ex-

pense as exogenous input is that unit fuel expense, similar to crude oil

price, is very likely to fluctuate; thus, fuel expense may not accurately

reflect the exact fuel consumption and equipment usage. In this study,

fuel consumption, insteadof the time series of fuel expense, is employed

to facilitate the modeling of the maintenance cost of construction

equipment, and GRNN and VAR are used for multivariate time series

modeling.

The long-term dynamics of the time series can be maintained be-

cause the maintenance cost and the time series of fuel consumption

are stationary based on the ADF test. In this case, no co-integration test

should be conducted. Therefore, simple VAR can sufficiently model the

four pairs of time series.

Similar to the procedure for lag determination in the univariate ap-

proach, the autoregressive order of VAR is determined by AIC, with p

ranging from 0 to 12. For GRNN, the uniform lag length is determined

for both maintenance cost and the time series of fuel consumption sim-

ilar to VAR. This lag length follows the autoregressive order of VAR.

Table 3 summarizes the autoregressive order of the ARMA model and

the lag length of the GRNN model.

6.5. Model validation

Chatfield [23] emphasized that different forecasting models and

methods should be compared on the basis of genuine out-of-sample

predictions. In this research, the observed cost series (N observations)

is divided into two parts. The latest m (m = 12) observations are

taken as the validation dataset, and all the earlier observations are

used for model training. The twelve out-of-sample values, which repre-

sent the maintenance cost of 12 months ahead of forecasting time, are

reserved for validation tests. Based on the forecasting and actual ob-

served values of the validation dataset, the model is validated by mea-

suring the mean absolute percentage error (MAPE) of the forecasting

over the validation dataset. MAPE is defined as:

MAPE ¼

X

N

t¼N−Mþ1

xt−xt−1

xt

�

�

�

�

�

�

�

�

M
ð10Þ

where

N the number of observations in time series

M the number of validation data

xt the observed value at time t

xt − 1 the forecasted value of xt based on observed time series up to

xt − 1.

MAPE is taken as the average absolute percentage error measured

over the m reserved observations (m = 12 in this study) so that the

performance of the different time series models can be evaluated and

compared. MAPE measures the forecasting accuracy of models on the

maintenance costs of different equipment group or fleets. The forecast

model with a lower MAPE value is preferred, which indicates a better

model with smaller deviations between the predicted and actual values

of the time series.

For univariate ARMA, multivariate VAR, and GRNN, one-step-ahead

approach is used for prediction, that is, the predicted value of each

out-of-sample prediction result is used as input for the next prediction

step.

7. Comparison of ARMA, VAR, and GRNN models

Table 4 summarizes the results of MAPE measured in the prediction

periods of the maintenance cost of construction equipment for the four

univariate and multivariate models. Figs. 4–7 show the prediction re-

sults compared with the actual time series of maintenance cost. Overall,

the four models predict the four time series with fair levels of accuracy,

with an averageMAPE ranging from amaximum of 25.7% for VAR and a

minimum of 20.4% for multivariate GRNN. Despite the difference in ac-

curacies, the four time series models can adequately predict the behav-

ior of the time series of construction equipment maintenance cost. The

Table 1

Unit root test results for maintenance and fuel consumption time series after noise

reduction.

Group ADF p-Value

Dump truck maintenance cost ($) −0.876 0.331

Wheel loader maintenance cost ($) −0.539 0.478

Fleet A maintenance cost ($) −0.032 0.666

Fleet B maintenance cost ($) −0.213 0.604

Dump truck fuel consumption (liters) −0.913 0.314

Wheel loader fuel consumption (liters) −1.164 0.219

Fleet A fuel consumption (liters) −0.654 0.428

Fleet B fuel consumption (liters) −0.716 0.401

Notes: The p-value was computed using the algorithm of MacKinnon [27] one-sided

p-values.

Table 2

Autoregressive and moving orders for ARMA and lag length for GRNN for the univariate

approach.

Time series models ARMA GRNN

Autoregression

order

Moving average

order

Lag

length

Dump truck maintenance cost 5 12 5

Wheel loader maintenance cost 7 11 7

Fleet A maintenance cost 5 12 5

Fleet B maintenance cost 8 12 8

Table 3

Autoregressive order for VAR and lag length for GRNN for the multivariate approach.

Time series models VAR GRNN

Autoregression order Lag length

Dump truck group maintenance cost 3 3

Wheel loader group maintenance cost 7 7

Fleet A maintenance cost 10 10

Fleet B maintenance cost 6 6

Table 4

Prediction performance (MAPE) of the four models for four equipment maintenance cost

time series.

Time series models ARMA VAR Univariate GRNN Multivariate GRNN

Dump truck group cost 27.65% 27.46% 25.43% 16.68%

Wheel loader group cost 19.26% 34.78% 20.85% 18.19%

Fleet A maintenance cost 22.61% 17.31% 24.56% 22.88%

Fleet B maintenance cost 22.69% 23.42% 24.78% 23.67%

Average 23.05% 25.74% 23.90% 20.36%
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use of GRNN with input of both historical maintenance costs and the

time series of fuel consumption is the best model for the maintenance

cost of construction equipment.

However, the multivariate GRNN only slightly outperforms other

models. GRNN is a nonlinear regression surface estimator and an adap-

tive estimator of the output of a particular input pattern based on its

closeness to other patterns. GRNN can be constrained by its iterative

learning algorithm. The network might be “trapped” in the local mini-

mum of the error surface and might stop training although the global

minimum of error has not yet been reached because of the iteration

of searching an optimal smoothingparameter. This phenomenon can af-

fect the modeling capability of GRNN as a regression surface estimator.

Given this constraint, although the traditional univariate ARMA does

not perform as well as multivariate GRNN, it provides a meaningful al-

ternative modeling of themaintenance cost of construction equipment.

Aside from prediction performance, the interpretability of the ARMA

model is better than that of neural network models.

Although neural networks are black-box models, the different

effects of input parameters in ARMA can be identified, which enhances

the analysis of the time series dynamics by studying the influences

of the different lags of the time series for equipment management

decision-making. Furthermore, traditional ARMA modeling has an

established procedure for model parameter identification, which in-

cludes the optimal value of autoregressive and moving average order

(e.g., by AIC) and testing the stationarity of the time series (e.g., by

ADF test). On the other hand, for the use of GRNN in the time series

approach, no consensus of method exists in determining the lag length.

(In this study, the lag length of GRNN follows the autoregressive order

of ARMA for the same time series modeling) These features make

ARMA a viable alternative approach tomodelmaintenance cost for con-

struction equipment industry practitioners, considering that the differ-

ence in performance between multivariate GRNN and ARMA is not

significant.

The traditional time series analysis paradigm and the neural network

approach have different performances in univariate and multivariate

modeling. For the univariate approach, the performance of ARMA is sim-

ilar to that of GRNN, whereas for the multivariate approach, GRNN

models generally perform better than VAR models. The reason for this

phenomenon is that, for the univariate approach, a linear and simpler

model is sufficient to describe the serial relationshipwithin a time series.

However, for multivariate modeling, a nonlinear learning algorithm

such as GRNN is needed to depict the underlying complex relationship.

Fig. 4. Prediction performance of different models for the averagemaintenance and repair

cost of a dump truck.

Fig. 5. Prediction performance of different models for the averagemaintenance and repair

cost of a wheel loader.

Fig. 6. Prediction performance of different models for the maintenance and repair cost of

Fleet A.

Fig. 7. Prediction performance of different models for the maintenance and repair cost of

Fleet B.
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8. Effect of fuel consumption on time series modeling

The amount of fuel consumed by construction equipment can be

used as an indicator of equipment tear and wear which in turn affects

the deterioration rate and maintenance costs of equipment during con-

struction. Fuel consumption is a better indicator than the unit of service

of equipment (for examples, the hours worked, or the distance trav-

eled), as it also reflects the intensity of equipmentworkload. Equipment

tends to experience more malfunctioning or failures after extended pe-

riod of working under full-load conditions, therefore the amount of fuel

consumption can be a leading indicator of equipment maintenance

costs.

Chatfield [23] concluded that “one favorable condition of applying

multivariate time series modeling is suitable explanatory variables

have been identified and measured, especially when one or more of

them is a leading indicator”. The incorporation of the time series of

fuel consumption as an explanatory variable in the models is found to

be useful in the modeling of the maintenance cost of construction

equipment. However, the experimental tests also found that the effect

of this additional explanatory variable is only effective for individual

equipment groups (i.e., dump trucks, andwheel loaders) but not signif-

icant for fleet maintenance cost. Table 5 shows a comparison of the av-

erage MAPE on equipment groups of the same type of equipment and

equipment fleet ofmixed types of equipment. For individual equipment

groups, univariate GRNN only has a MAPE score of 23.14%, whereas, for

multivariate GRNN, MAPE significantly improves to 17.44%. On the

other hand, for prediction at the fleet level, the values of MAPE have

only minor differences. Thus, for such a prediction, the incorporation

of fuel consumption data in the forecastingmodel does not significantly

improvemodeling performance. This is attributed to the fact that differ-

ent types of equipment have different deterioration rates and levels of

fuel consumption with different configurations, equipment weight,

and equipment enginemodel within a similar operation period; as a re-

sult, the effect of fuel consumption is averaged out. Therefore, fuel con-

sumption provides very limited information for fleet cost modeling in

time series method.

The fuel consumption of construction equipment can be reasonably

estimated during the planning period because the amount of fuel con-

sumption is closely related to equipment workload, which is related to

the nature and scale of the job site in which the equipment is allocated.

Therefore, the fuel consumption of equipment, especially the mainte-

nance cost of individual groups of equipment, can be incorporated

into a time series model to account for the amount of work the equip-

ment is expected to carry out.

However, the above rule is not applicable to the classical time series

models such as Box–Jenkins models. Chatfield [23] emphasized that

although VARmay fit training data better than ARMA, it does not always

have a better prediction than ARMA. The multiple time series model

may notmodel the behavior of a time serieswell because parameter un-

certainty increaseswhenmore input parameters are incorporated in the

model [23]; thus, prediction performance may deteriorate. The multi-

variate linear approach also hasmore opportunity to overfit the time se-

ries by modeling noise and outliers [23], which may have caused the

following results of this study: VAR fails tomodel adequately the behav-

iors of both maintenance cost and fuel consumption dynamics, and the

nonlinear neural networkmodel is a better alternative toward the mul-

tivariate time series approach for themodeling of themaintenance cost

of construction equipment.

9. Discussions on the forecasting of construction equipment

maintenance costs

Construction equipment fleet maintenance cost is the aggregated

maintenance cost of mixed types of equipment at a top level, fleet main-

tenance cost forecasting helps to budget for the spending or plan for busi-

ness expansion of a corporation, or division. On the contrary, forecasting

ofmaintenance cost for equipment groups is useful for planning of lower

level operations, including allocation of repair parts, labor, and financial

resources. In theory, the top level forecasting can be broken down to

the lower level data in their expected proportions (top–down), and the

lower level forecasting can be aggregated to get top level forecasting

(bottom–up), but both approaches have practical difficulties in real life

applications. In top–down approach, it is difficult to determine the pro-

portions for lower level equipment costs, and in bottom–up approach,

many equipment units do not have sufficient or reliable data for forecast

modeling. As a result, separate forecasting models shall be built for

equipment fleet maintenance cost and equipment group maintenance

cost to achieve the best forecasting accuracy for each case.

In addition to the budget planning and operating resource allocation,

an accurate forecasting of construction equipment maintenance cost is

critical for other equipment management decisions. First, the results

can be used for equipment replacement or repair decisions. Early or de-

layed replacement of heavy construction equipment can have signifi-

cant financial implications for a contractor; forecasting information

can help the contractor to make correct decisions; second, the results

can be used for setting accurate rate of charge on equipment use, either

internally to the project or externally to the renters. Accurate forecast-

ing information can avoid a low rate of charge leading to operating

loss, or a high rate of charge leading to loss of market.

As a major component of equipment ownership and operating cost,

equipment maintenance cost is difficult to predict due to the random

nature of system failures. Therefore, in most of the current methods

for estimating equipment cost, the average maintenance cost ($ per

unit of service) is used for decision support purpose instead. The

methods include Caterpillar method [28]; Corps of Engineers Method

[29]; Peurifoy/Schexnayder method [1], etc., however, Gransberg etc.

[30] found these methods give much varied results in hourly unit cost

for the same piece of equipment, and onemajor difference lies in the es-

timation of equipment maintenance/repair costs.

The forecasting models in this research explored the time series

modeling of construction equipment maintenance costs, which give

more accurate results through explorative data analysis. The better ac-

curacy of the forecasting results can be explained from the following

three perspectives: (1) the general or global trend of maintenance

cost change is modeled; (2) the change patterns of maintenance cost,

aswell as the recentmaintenance cost history of equipment ismodeled;

and (3) the explanatory factors of equipmentmaintenance cost, such as

the fuel consumption, can be used as an leading indicator and be incor-

porated into the model to further improve the forecasting results for

equipment groups.

10. Conclusion

In this study, the time series approach was applied to predict the

maintenance cost of construction equipment by using both traditional

time series and GRNN models. Time series approaches can utilize the

overall trend, fluctuation patterns, recent history of cost changes in

the forecastingmodels; a comparison of traditional linear and nonlinear

GRNNmodels reveals that nonlinear neural network models can better

characterize the relationship between the current value of maintenance

cost and historical observations of both maintenance cost and related

explanatory time series.

Additional information on equipment operations, such as fuel con-

sumption, can improve the forecasting accuracy of the maintenance

cost of equipment categories because the amount of fuel consumption

Table 5

Average MAPE of prediction results on individual equipment group (dump truck and

wheel loader) and equipment fleet (Fleet A and Fleet B) maintenance cost.

Model types ARMA VAR Univariate GRNN Multivariate GRNN

Equipment group 23.46% 31.12% 23.14% 17.44%

Equipment fleet 22.65% 20.37% 24.67% 23.28%
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can generally reflect the accumulated equipment operational duration

andworkloads. A change in equipment fuel consumption usually causes

a change in equipment maintenance costs with or without lagged ef-

fects. The incorporation of this information in the multivariate time se-

ries models (both linear and nonlinear) can be used to explain the

fluctuation ofmaintenance cost; thus, forecasting results on themainte-

nance cost of individual equipment groups are significantly improved.

On the other hand, incorporation of equipment fuel consumption into

the fleet maintenance forecasting model cannot effectively improve

the forecasting results as the equipment fleet is comprised of mixed

types of construction equipment, fuel consumption is not always a lead-

ing indicator of equipmentmaintenance cost for all types of equipment,

and the data change patterns tend to be smoothed out after aggregation.

Compared with the current methods for estimating equipment

maintenance costs, the time series modeling approaches are studied

and different types of models are compared in this research, it is con-

cluded that forecasting results can be used formaking better equipment

management decisions, such as equipment-related resource allocation,

equipment replacement, determining the internal rate of charge on

equipment. However, time series approaches can only be used to sup-

plement the current practice, both Box–Jenkins models and GRNN

models are thebest approximations of themaintenance cost time series,

most of the model parameters are determined through trial and error

based on established scientific method, it is not always possible to ex-

plain and validate these models using explicit knowledge. The decision

makers should make an independent assessment on the forecasting re-

sults based on the current practice and expert opinions. Future research

in this area can be extended to cover the topics of sensitivity of model

parameters, forecasting of maintenance cost intervals rather than

point values, more extensive tests and validation using other types of

numerical forecasting models, and so on.
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