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a b s t r a c t 

According to a conventional interpretation of a multiplier DEA model, its optimal weights show the de- 

cision making unit under the assessment, denoted DMU o , in the best light in comparison to all observed 

DMUs. For multiplier models with additional weight restrictions such an interpretation is known to be 

generally incorrect (specifically, if weight restrictions are linked or nonhomogeneous), and the meaning 

of optimal weights in such models has remained unclear. In this paper we prove that, for any weight re- 

strictions, the optimal weights of the multiplier model show DMU o in the best light in comparison to the 

entire technology expanded by the weight restrictions. This result is consistent with the fact that the dual 

envelopment DEA model benchmarks DMU o against all DMUs in the technology, and not only against the 

observed DMUs. Our development overcomes previous concerns about the use of weight restrictions of 

certain types in DEA models and provides their rigorous and meaningful interpretation. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Data envelopment analysis (DEA) is a nonparametric approach 

to the assessment of efficiency and productivity of organizational 

units ( Cooper, Seiford, & Tone, 2007; Thanassoulis, Portela, & De- 

spi ́c, 2008 ). The latter are conventionally referred to as decision 

making units (DMUs). Standard DEA models are based on the as- 

sumption that the underlying production technology is character- 

ized by either constant (CRS) or variable (VRS) returns to scale. 

Both CRS and VRS models can be stated as two mutually 

dual linear programs referred to as the envelopment and multi- 

plier models. The optimal value of these two programs is inter- 

preted as the input or output radial efficiency of DMU o under the 

assessment, depending on the orientation in which the models 

are solved ( Banker, Charnes, & Cooper, 1984; Charnes, Cooper, & 

Rhodes, 1978 ). In particular, in the envelopment model, DMU o is 

benchmarked against the boundary of the CRS or VRS technology, 

and the radial efficiency of DMU o is interpreted as the utmost pro- 

portional improvement factor to its input or output vector possible 

in the technology. 

The multiplier models are stated in terms of variable input 

and output weights (multipliers). The CRS multiplier model can 

be shown to maximize the ratio of the total weighted output to 

the total weighted input ( efficiency ratio ) of DMU o , provided no 

such ratio across all observed DMUs can exceed the value of 1. 

The VRS multiplier model has an additional dual variable inter- 
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pretable in terms of returns to scale and scale elasticity ( Banker 

et al., 1984; Podinovski, Chambers, Atici, & Deineko, 2016; Podi- 

novski & Førsund, 2010; Podinovski, Førsund, & Krivonozhko, 2009; 

Sahoo & Tone, 2015 ). As pointed by Charnes et al. (1978) , the op- 

timal input and output weights are the most favorable to DMU o 

and show it in the best light in comparison to all observed 

DMUs. 

1.1. Weight restrictions 

Weight restrictions usually represent value judgments incorpo- 

rated in the form of additional constraints on the input and out- 

put weights in the multiplier model. These constraints reduce the 

flexibility of weights and typically improve the discrimination of 

the DEA model (see, e.g., Allen, Athanassopoulos, Dyson, & Thanas- 

soulis, 1997; Cook & Zhu, 2008; Joro & Korhonen, 2015; Thanas- 

soulis et al., 2008 ). 

The use of weight restrictions generally changes the interpre- 

tation of efficiency in both the envelopment and multiplier mod- 

els. From the technology perspective, the incorporation of weight 

restrictions results in the expansion of the model of technology 

( Charnes, Cooper, Wei, & Huang, 1989; Halme & Korhonen, 20 0 0; 

Roll, Cook, & Golany, 1991 ). Podinovski (2004a) shows that this ex- 

pansion is caused by the dual terms in the envelopment model 

generated by weight restrictions, and that DMU o is projected on 

the boundary of the expanded technology. Therefore, DMU o is 

benchmarked against all units in the technology (including those 

generated by the weight restrictions), and not only against the ob- 

served units. 

http://dx.doi.org/10.1016/j.ejor.2016.04.035 
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The interpretation of efficiency in terms of the multiplier model 

with weight restrictions is somewhat less obvious and currently 

incomplete. This can be summarized as follows. If all weight re- 

strictions are homogeneous and not linked (see Section 2 for a for- 

mal definition), the multiplier model correctly identifies the opti- 

mal weights (within the specified weight restrictions) that repre- 

sent DMU o in the best light in comparison to all observed DMUs 

( Podinovski, 2001a ). 

However, a problem with the interpretation arises if at least 

one weight restriction is nonhomogeneous or is linked. In this case 

the optimal weights do not generally represent DMU o in the best 

light in comparison to all observed DMUs. Consequently, the op- 

timal value of the multiplier model with such weight restriction 

generally underestimates the relative efficiency of DMU o . Exam- 

ples illustrating this point are given by Podinovski (1999 , 2001a) ; 

Podinovski and Athanassopoulos (1998) and, recently, by Khalili, 

Camanho, Portela, and Alirezaee (2010) . 

1.2. Contribution 

In this paper we show that, for any weight restrictions, the op- 

timal weights of the multiplier model show DMU o in the best light 

in comparison to all DMUs in the expanded technology generated by 

the weight restrictions. This result is true if we search among all 

nonnegative input and output weights, or only among those that 

satisfy the weight restrictions. 

Our results also overcome the discrepancy between the inter- 

pretation of the envelopment and multiplier models with weight 

restrictions. Indeed, as pointed above, the envelopment model 

benchmarks DMU o against all DMUs in the technology expanded 

by the weight restrictions. However, the conventional interpreta- 

tion of the multiplier model assumes that DMU o should be bench- 

marked against the observed DMUs only. As noted, this conven- 

tional assumption does not lead to a meaningful interpretation of 

some types of weight restrictions. Our results show that the mul- 

tiplier model does exactly the same as the envelopment model—it 

benchmarks DMU o against all DMUs in the expanded technology, 

for all types of weight restrictions. 

From a practical perspective, this new interpretation can be 

used to justify the incorporation of any types of weight restrictions 

in the multiplier model, and explain the meaning of the result- 

ing optimal weights and efficiency scores. This includes absolute 

weight bounds and linked weight restrictions, whose meaning has 

so far remained unclear. 

2. Weight restrictions and production trade-offs 

To be specific, we derive our main results for the input-oriented 

models under the assumption of CRS. These results fully extend 

to the output-oriented models and also to the case of VRS, with 

obvious minor modifications as outlined in Section 5 . 

2.1. Multiplier models with weight restrictions 

Consider the set of observed DMUs ( X j , Y j ), j = 1 , . . . , N, where 

X j ∈ R m 
+ \{ 0 } and Y j ∈ R s + \{ 0 } are, respectively, the vectors of inputs 

and outputs. The DMU o under the assessment is denoted ( X o , Y o ). 

Multiplier CRS models are stated in terms of variable vectors of 

input and output weights v ∈ R m 
+ and u ∈ R s + . Weight restrictions 

are additional constraints on vectors v and u incorporated in the 

multiplier model and stated in the general form as follows: 

Q 
⊤ 
t u − P ⊤ t v ≤ c t , t = 1 , . . . , K. (1) 

In inequalities (1) , components of vectors Q t ∈ R s and P t ∈ R m , and 

constant scalars c t may be positive, negative or zero. The weight 

restriction t is linked if both vectors P t and Q t are nonzero, and not 

linked otherwise. The weight restriction t is homogeneous if c t = 0 , 

and nonhomogeneous otherwise. 1 , 2 

Remark 1. Using the normalizing equality of the multiplier mod- 

els, any nonhomogeneous weight restriction can be replaced by a 

homogeneous one. For example, using equality (2.2) stated below, 

a nonhomogeneous weight restriction t is replaced by the homo- 

geneous (possibly linked) weight restriction which, after a simple 

rearrangement, takes on the form Q ⊤ t u − ( P t + c t X o ) 
⊤ 
v ≤ 0 . 3 

Based on Remark 1 and therefore without loss of generality 

we assume that all weight restrictions (1) are homogeneous. The 

input-oriented CRS multiplier model with such weight restrictions 

is stated as follows: 

θ ∗ = max Y ⊤ o u (2.1) 

subject to X ⊤ o v = 1 , (2.2) 

Y ⊤ j u − X ⊤ j v ≤ 0 , j = 1 , . . . , N, (2.3) 

Q 
⊤ 
t u − P ⊤ t v ≤ 0 , t = 1 , . . . , K, (2.4) 

u, v ≥ 0 . (2.5) 

2.2. Envelopment models with production trade-offs 

To demonstrate that weight restrictions (2.4) result in the ex- 

pansion of the standard CRS technology, consider the dual envel- 

opment model to program (2) : 

θ ∗ = min θ (3.1) 

subject to 
N 

∑ 

j=1 

λ j X j + 

K 
∑ 

t=1 

πt P t + S X = θX o , (3.2) 

N 
∑ 

j=1 

λ j Y j + 

K 
∑ 

t=1 

πt Q t − S Y = Y o , (3.3) 

λ, π , S X , S Y ≥ 0 , θ sign free . (3.4) 

The above model allows a straightforward interpretation. The 

DMU 

( ̂  X , ̂  Y ) = 

( 
N 

∑ 

j=1 

λ j X j , 

N 
∑ 

j=1 

λ j Y j 

) 

in equalities (3.2) and (3.3) is a unit in the standard CRS tech- 

nology. DMU ( ̂  X , ̂  Y ) is further modified by the terms generated by 

weight restrictions (2.4) : 

(P t , Q t ) , t = 1 , . . . , K. (4) 

1 Following Charnes et al. (1989) , unlinked homogeneous weight restrictions are 

often referred to as assurance regions of Type I. A special case of this type is vir- 

tual weight restrictions of Wong and Beasley (1990) . Similarly, following Thompson, 

Langemeier, Lee, Lee, and Thrall (1990) , linked homogeneous weight restrictions are 

referred to as assurance regions of Type II. The most common example of non- 

homogeneous weight restrictions is absolute weight bounds ( Dyson & Thanassoulis, 

1988 ). 
2 DEA literature suggests different methods for assessing weight restrictions of 

various types (see, e.g., reviews in Thanassoulis et al., 2008 and Jain, Kumar, Kumar, 

& Chandra, 2015 ). Our new results apply to any weight restrictions (1) , regardless 

of the method used for their assessment. 
3 The described transformation obviously depends on the DMU o under the as- 

sessment and also on the (input or output) orientation of the model ( Podinovski, 

20 04a, 20 05 ). 
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Table 1 

DMUs in Example 1 . 

DMU Input Output 1 Output 2 

A 1 1 2 

B 1 2 1 

C 1 0 4 

These terms specify simultaneous changes to the inputs and out- 

puts, and are implemented in proportions π = (π1 , . . . , πK ) ≥ 0 . Fi- 

nally, the slack vectors S X and S Y correspond to the assumption of 

free disposability of inputs and outputs. 

Following Podinovski (2004a) , the terms (4) are referred to as 

production trade-offs . By minimizing θ , program (3) identifies the 

input radial projection of DMU o on the boundary of the expanded 

CRS technology T CRS −TO defined as follows. 

Definition 1 ( Podinovski (2004a) ) . Technology T CRS −TO is the set 

of all pairs (X, Y ) ∈ R 
m + s 
+ for which there exist vectors λ ∈ R N + , π ∈ 

R K + , S X ∈ R m 
+ and S Y ∈ R s + , such that 

X = 

N 
∑ 

j=1 

λ j X j + 

K 
∑ 

t=1 

πt P t + S X , 

Y = 

N 
∑ 

j=1 

λ j Y j + 

K 
∑ 

t=1 

πt Q t − S Y . (5) 

Remark 2. It is well known that, in some cases, the multiplier 

model (2) may be infeasible, which corresponds to an unbounded 

optimal value (i.e., equal to −∞ ) of the dual envelopment model 

(3) . Podinovski and Bouzdine-Chameeva (2013 , 2015) prove that, in 

all such cases, the expanded technology T CRS −TO allows free pro- 

duction , i.e., that there exists a DMU ( ̃  X , ̃  Y ) ∈ T CRS −TO such that 
˜ X = 0 and ˜ Y � = 0 . In this case weight restrictions (2.4) and trade- 

offs (4) are called inconsistent (with the data set formed by 

the observed DMUs). Podinovski and Bouzdine-Chameeva (2013 , 

2015) show that weight restrictions may be inconsistent even if 

program (2) is feasible and has a finite optimal value θ ∗ for all 

observed DMU o , and develop analytical and computational tests of 

consistency. If the weight restrictions are inconsistent, this usually 

points to an error in their assessment, and the weight restrictions 

should be reconsidered. In this paper we assume that weight re- 

strictions (2.4) are consistent. In particular, this assumption implies 

that program (2) has a finite optimal value θ ∗ > 0, provided X o � = 

0 and Y o � = 0. 

3. Motivational example 

The following example demonstrates that the weights (u, v ) 

that show DMU o in the best light in comparison to all observed 

DMUs are generally different to the weights that show DMU o in 

the best light in comparison to all DMUs in the expanded technol- 

ogy T CRS −TO . 
4 

Example 1. Table 1 shows two observed DMUs A and B in a model 

with one input and two outputs. (DMU C is not observed and is 

introduced below.) Consider the multiplier CRS model for the as- 

sessment of the input radial efficiency of DMU A in which we in- 

corporate the additional linked weight restriction 4 u 2 − v 1 ≤ 0 : 5 

θ ∗ = max 1 u 1 + 2 u 2 (6.1) 

4 A larger example with a similar observation is considered by Podinovski and 

Athanassopoulos (1998) . 
5 As noted in Remark 1 , equality (6.2) implies that in program (6) the weight 

restriction (6.5) is equivalent to the weight bound u 2 ≤ 0.25. 

Fig. 1. A graphical solution of Example 1 . The output weights at point U = 

(0 . 375 , 0 . 25) are optimal (together with v 1 = 1 ) in program (6) . By Theorem 2 , 

these weights represent DMU A in the best light in comparison to all DMUs in 

technology T CRS −TO . The weights at point V = (0 , 0 . 25) are not optimal in program 

(6) and represent DMU A in the best light in comparison to the set of observed 

DMUs only. 

subject to 1 v 1 = 1 , (6.2) 

1 u 1 + 2 u 2 − 1 v 1 ≤ 0 , (6.3) 

2 u 1 + 1 u 2 − 1 v 1 ≤ 0 , (6.4) 

4 u 2 − 1 v 1 ≤ 0 , (6.5) 

u 1 , u 2 , v 1 ≥ 0 . (6.6) 

Fig. 1 illustrates the feasible region of program (6) in dimen- 

sions u 1 and u 2 . (By (6.2) , v 1 = 1 in any feasible solution and is 

not shown.) As seen from the graph, the unique optimal solution to 

program (6) is u ∗1 = 0 . 375 , u ∗2 = 0 . 25 , together with v ∗1 = 1 (shown 

as point U ). The corresponding optimal value of program (6) is 

θ ∗ = 0 . 875 . 

Benchmarking against the observed DMUs only. It is straight- 

forward to show that the optimal weights (u ∗1 , u 
∗
2 , v 

∗
1 ) do not rep- 

resent DMU A in the best light in comparison to all observed DMUs, 

in the sense discussed in Charnes et al. (1978) which is now con- 

sidered the standard interpretation. Indeed, the efficiency ratios of 

observed DMUs A and B are defined as follows: 

E A (u, v ) = 
1 u 1 + 2 u 2 

1 v 1 
, E B (u, v ) = 

2 u 1 + 1 u 2 
1 v 1 

. (7) 

Substituting the above optimal weights into (7) , we obtain 

E A (u 
∗, v ∗) = 0 . 875 and E B (u 

∗, v ∗) = 1 . Therefore, judging by the 

optimal solution to program (6) , DMU A should be regarded as 

inefficient. 

However, consider another feasible solution to program (6) : 

ˆ u 1 = 0 and ˆ u 2 = 0 . 25 , together with ˆ v 1 = 1 (point V in Fig. 1 ). 

Substituting these weights into (7) , we obtain E A ( ̂  u , ̂  v ) = 0 . 5 and 

E B ( ̂  u , ̂  v ) = 0 . 25 . This implies that, for the output weights repre- 

sented by point V , DMU A has the maximum efficiency ratio among 

all observed DMUs and should therefore be regarded as efficient. 

It is now clear that the optimal value 0.875 of the multiplier 

model (6) does not correctly represent the highest efficiency ratio 

that DMU A can achieve in comparison to all observed DMUs. In 
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Table 2 

Efficiency ratios for different multiplier weights in Example 1 . 

DMU Point U : Point V : 

u ∗1 = 0 . 375 , u ∗2 = 0 . 25 , v ∗1 = 1 ˆ u 1 = 0 , ˆ u 2 = 0 . 25 , ˆ v 1 = 1 

A 0.875 0.5 

B 1 0.25 

C 1 1 

this sense, the optimal weights (u ∗1 , u 
∗
2 , v 

∗
1 ) are not the most favor- 

able for DMU A . 

The above problem was first identified by Podinovski and 

Athanassopoulos (1998) and Podinovski (1999 , 2001a) who devel- 

oped a methodology that correctly benchmarked any DMU o against 

the observed DMUs. 6 

In this paper we take a different route and show that the above 

optimal weights (u ∗1 , u 
∗
2 , v 

∗
1 ) are, in fact, meaningful, but in a differ- 

ent sense. Namely, instead of showing DMU A in the best light in 

comparison to the observed DMUs only, they benchmark this DMU 

against the entire technology T CRS −TO . This is illustrated below. 

Benchmarking against the entire technology. As shown in 

Section 2 , the weight restriction (6.5) generates the trade-off P = 

(1) , Q = (0 , 4) ⊤ . By Definition 1 , technology T CRS −TO consists of all 

nonnegative DMUs ( x 1 , y 1 , y 2 ) that can be stated in the following 

form: 

x 1 = 1 λA + 1 λB + 1 π1 + S x 1 , 

y 1 = 1 λA + 2 λB − S y 1 , 

y 2 = 2 λA + 1 λB + 4 π1 − S y 2 , (8) 

where λA , λB , π1 , S x 1 , S y 1 , S y 2 ≥ 0 . 

Consider DMU C in Table 1 . It satisfies (8) with π1 = 1 and λA = 

λB = S x 1 = S y 1 = S y 2 = 0 . Therefore, C ∈ T CRS −TO . The efficiency ratio 

of DMU C at both points U and V is equal to 1. 

Table 2 shows the efficiency ratios of the three DMUs, A , B and 

C , at the two sets of weights. Observe that, although the weights 

( ̂  u 1 , ̂  u 2 , ̂  v 1 ) represent DMU A in the best light in comparison to 

DMU B (and, therefore, in comparison to all observed DMUs in our 

example), these weights are not the best if A is compared to C . In- 

deed, at point U the efficiency ratio of A is equal to 0.875 of the 

efficiency ratio of C , while at point V it is only 0.5 of the latter. 

The above example motivates our main development below. 

Namely, Theorem 2 formally establishes that the optimal weights 

(u ∗1 , u 
∗
2 , v 

∗
1 ) of program (6) represent DMU A in the best light in 

comparison to all DMUs in the expanded technology (8) . Further- 

more, the optimal value 0.875 is the highest efficiency ratio that 

DMU A can achieve if benchmarked against all DMUs in this tech- 

nology, and not only against the set of observed DMUs. 

4. The main results 

In this section we show that any optimal weights (u ∗, v ∗) to the 

multiplier model (2) show DMU o in the best light in comparison 

to all units in technology T CRS −TO . As demonstrated by Example 1 , 

this interpretation is generally not true if DMU o is benchmarked 

against the set of observed DMUs only. 

The above interpretation is clarified and supported by the re- 

sults that we prove for three different variants of the multiplier 

model. This includes the multiplier model with linear constraints, 

its linear fractional analogue in which the maximum efficiency ra- 

tio is bounded above by 1, and in the maximin model in which no 

normalization is required. 

6 Podinovski (20 01b , 20 04b) explores this issue further and identifies particular 

types of weight restrictions, for which the optimal weights in the multiplier model 

are not the most favorable for DMU o . A summary of some of these results and their 

practical implications are discussed in Dyson et al. (2001) . 

In the interests of generality, we assume that DMU o is any unit 

in technology T CRS −TO such that X o ∈ R m 
+ \{ 0 } and Y o ∈ R s + \{ 0 } . In 

particular, DMU o may be any of the observed units. 

4.1. The linear multiplier model 

Consider the following program with the infinite number of lin- 

ear constraints—note, this program is different from the standard 

multiplier model (2) : 

θ ∗
1 = max Y ⊤ o u (9.1) 

subject to X ⊤ o v = 1 , (9.2) 

Y ⊤ u − X ⊤ v ≤ 0 , ∀ (X, Y ) ∈ T CRS −TO , (9.3) 

u, v ≥ 0 . (9.4) 

Denote � and �∗ the sets of feasible and, respectively, optimal 

solutions to program (2) . Similarly, let �1 and �
∗
1 be the sets of 

feasible and, respectively, optimal solutions to program (9) . 

Theorem 1. If solution (u, v ) is feasible in program ( 2 ), then (u, v ) 

is feasible in ( 9 ). If (u ∗, v ∗) is optimal in ( 2 ), then (u ∗, v ∗) is optimal 

in ( 9 ). Therefore, the maximum in program ( 9 ) is attained, � ⊆ �1 , 

�∗ ⊆ �∗
1 and θ

∗ = θ ∗
1 . 

Theorem 1 and the other results are proved in Appendix A . 

Proposition 1. For the projected DMU (X, Y ) = (θ ∗X o , Y o ) ∈ T CRS −TO 

and for any optimal weights (u ∗, v ∗) to program ( 9 ), the inequality 

(9.3) is satisfied as equality, i.e., Y ⊤ o u 
∗ − θ ∗X ⊤ o v 

∗ = 0 . 

Proposition 1 implies that the equation Y ⊤ u ∗ − X ⊤ v ∗ = 0 defines 

a supporting hyperplane to technology T CRS −TO at the projection 

( θ ∗X o , Y o ), and that (−v ∗, u ∗) is its normal vector, where (u ∗, v ∗) 

are any optimal weights in program (9) or, by Theorem 1 , in pro- 

gram (2) . 

Example 2 given in Appendix B shows that the feasible region 

of program (9) may be larger than the feasible region of program 

(2) , i.e., generally, � � = �1 . Similarly, in the general case, �∗ � = �∗
1 . 

However, in an important special case we have the following re- 

sult. 

Proposition 2. Let all components of vectors X o and Y o be strictly 

positive. Then �∗ = �∗
1 . 

The implications of Theorem 1 for the interpretation of optimal 

weights (u ∗, v ∗) become clearer if program (9) is restated in a lin- 

ear fractional form, as shown below. 

4.2. The linear fractional model 

Similar to the standard CRS model, program (9) can be restated 

in the linear fractional form: 7 

θ ∗
2 = max Y ⊤ o u / X 

⊤ 
o v (10.1) 

7 Because program (10) may involve division by zero, we need to clarify the 

definition of its feasible region. A seemingly simple approach would require that 

we have X ⊤ v > 0 , for all DMUs (X, Y ) ∈ T CRS −TO , and that all inequalities (10.2) be 

true. However, this definition does not work well for several reasons. In particu- 

lar, no weights satisfy it at the zero DMU (0 , 0) ∈ T CRS −TO , the maximum of pro- 

gram (10) becomes generally unattained, and not all feasible (or optimal) solutions 

of programs (2) or (9) remain feasible in (10) . To avoid these drawbacks, we con- 

sider weights (u, v ) ≥ 0 feasible in program (10) if the following two conditions are 

true. First, we require that X ⊤ o v > 0 . Second, constraints (10.2) should be satisfied 

only by DMUs (X, Y ) ∈ T CRS −TO such that X 
⊤ 
v > 0 . (As noted, this includes DMU ( X o , 

Y o ).) Stating these two implicit conditions in program (10) is straightforward but is 

not implemented to preserve similarity with the standard linear fractional model of 

Charnes et al. (1978) . 
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subject to Y ⊤ u / X ⊤ v ≤ 1 , ∀ (X, Y ) ∈ T CRS −TO , (10.2) 

u, v ≥ 0 . (10.3) 

Theorem 2. If solution (u ∗, v ∗) is optimal in program ( 2 ), then 

(u ∗, v ∗) is optimal in program ( 10 ). Therefore, the maximum in pro- 

gram ( 10 ) is attained and θ ∗ = θ ∗
2 . 

The following statement is a useful analogue of Proposition 1 . 

Proposition 3. For the projected DMU (X, Y ) = (θ ∗X o , Y o ) ∈ T CRS −TO 

and for any optimal weights (u ∗, v ∗) to program ( 10 ), the inequality 

(10.2) is satisfied as equality, i.e., (Y ⊤ o u 
∗) / (θ ∗X ⊤ o v 

∗) = 1 . 

By Theorem 2 , any optimal weights (u ∗, v ∗) to the multiplier 

model with weight restrictions (2) maximize the efficiency ratio 

Y ⊤ o u / X 
⊤ 
o v of DMU o with respect to the efficiency ratios of all DMUs 

in the expanded technology T CRS −TO , provided no such ratio ex- 

ceeds the value of 1. Using Proposition 3 , we can change the last 

condition to the requirement that the maximum of efficiency ra- 

tios across all DMUs is equal to 1. Furthermore, program (10) does 

not explicitly incorporate weight restrictions (2.4) , although these 

are implicitly accounted for in the definition of technology T CRS −TO 

and, therefore, in constraints (10.2) . 

The above means that any optimal weights (u ∗, v ∗) to the mul- 

tiplier model (2) represent DMU o in the best light in comparison 

to all DMUs in the technology T CRS −TO . Furthermore, such weights 

are the most favorable for DMU o among all nonnegative weights, 

and not only among those that satisfy weight restrictions (2.4) . 

Note that, as shown in Example 1 , this interpretation does not 

imply that the optimal weights (u ∗, v ∗) maximize the efficiency ra- 

tio of DMU o with respect to observed DMUs only. 

4.3. The maximin model 

The constraints of program (10) normalize the maximum effi- 

ciency ratio of all DMUs by 1. As proved below, these conditions 

can be removed and program (10) restated in the following form 

analogous to the maximin program in Podinovski and Athanas- 

sopoulos (1998) and Podinovski (2001a) : 8 

θ ∗
3 = max 

u, v ≥0 

(

Y ⊤ o u / X 
⊤ 
o v 

sup (X,Y ) ∈T CRS −TO 
{ Y ⊤ u / X ⊤ v } 

)

= max 
u, v ≥0 

(

inf 
(X,Y ) ∈T CRS −TO 

{

Y ⊤ o u / X 
⊤ 
o v 

Y ⊤ u / X ⊤ v 

})

. (11) 

Theorem 3. If solution (u ∗, v ∗) is optimal in program ( 2 ), then 

(u ∗, v ∗) is optimal in program (11) . Therefore, the maximum in pro- 

gram (11) is attained and θ ∗ = θ ∗
3 . 

According to the above result, the weights (u ∗, v ∗) maximize 

the efficiency ratio of DMU o in comparison to all DMUs in tech- 

nology T CRS −TO , when no upper bound on such ratios is specified. 

This means that the upper bound of 1 on the efficiency ratios in 

inequalities (10.2) is unimportant, and the weights (u ∗, v ∗) are the 

most favorable to DMU o among all nonnegative weights, without 

any additional conditions. 

5. The case of VRS 

Similar interpretation of optimal weights is obtained in the case 

of VRS. In order to avoid repetition, this is only briefly outlined 

8 Similar to the treatment of program (10) , we need several additional implicit 

conditions that define the feasible region of program (11) . These are formally stated 

in the proof of Theorem 3 . 

below. The VRS analogue of the input-oriented multiplier model 

(2) is stated with the additional free variable u 0 : 

ˆ θ ∗ = max Y ⊤ o u + u 0 (12.1) 

subject to X ⊤ o v = 1 , (12.2) 

Y ⊤ j u − X ⊤ j v + u 0 ≤ 0 , j = 1 , . . . , N, (12.3) 

Q 
⊤ 
t u − P ⊤ t v ≤ 0 , t = 1 , . . . , K, (12.4) 

u, v ≥ 0 , u 0 sign free . (12.5) 

The corresponding dual envelopment model is program (3) , 

with the additional normalizing equality 

N 
∑ 

j=1 

λ j = 1 . (13) 

Definition 2 ( Podinovski (2004a) ) . Technology T VRS −TO is the set 

of all pairs (X, Y ) ∈ R 
m + s 
+ for which there exist vectors λ, π , S X , 

S Y ≥ 0 of appropriate dimensions such that equalities (5) and the 

normalizing equality (13) are true. 

Consider the program with the infinite number of linear con- 

straints: 

ˆ θ ∗
1 = max Y ⊤ o u + u 0 (14.1) 

subject to X ⊤ o v = 1 , (14.2) 

Y ⊤ u − X ⊤ v + u 0 ≤ 0 , ∀ (X, Y ) ∈ T VRS −TO , (14.3) 

u, v ≥ 0 , u 0 sign free . (14.4) 

Denote ˆ � and ˆ �∗ the sets of feasible and, respectively, optimal 

solutions to program (12) . Similarly, let ˆ �1 and ˆ �∗
1 be, respectively, 

the feasible and optimal sets of program (14) . 

Theorem 4. If solution (u, v , u 0 ) is feasible in program ( 12 ), then 

(u, v , u 0 ) is feasible in ( 14 ). If (u 
∗, v ∗, u ∗0 ) is optimal in ( 12 ), then 

(u ∗, v ∗, u ∗0 ) is optimal in ( 14 ). Therefore, the maximum in program 

( 14 ) is attained, ˆ � ⊆ ˆ �1 , ˆ �∗ ⊆ ˆ �∗
1 and 

ˆ θ ∗ = ˆ θ ∗
1 . 

As in the case of CRS, program (14) can be restated in the linear 

fractional form: 

ˆ θ ∗
2 = max (Y ⊤ o u + u 0 ) / X 

⊤ 
o v 

subject to (Y ⊤ u + u 0 ) / X 
⊤ 
v ≤ 1 , ∀ (X, Y ) ∈ T VRS −TO , 

u, v ≥ 0 , u 0 sign free . (15) 

Theorem 5. If solution (u ∗, v ∗, u ∗0 ) is optimal in program ( 12 ), then 

(u ∗, v ∗, u ∗0 ) is optimal in program (15) . Therefore, the maximum in 

program (15) is attained and ˆ θ ∗ = ˆ θ ∗
2 . 

The proof of Theorem 5 is a straightforward adaptation of the 

proof of Theorem 2 and is not given. Furthermore, as in the case 

of CRS, program (15) can be restated in the maximin form similar 

to (11) . An analogue of Theorem 3 for this case is also straightfor- 

ward. 

As follows from the above development, the interpretation of 

the optimal weights (u ∗, v ∗, u ∗0 ) to the VRS multiplier model (12) is 

similar to the case of CRS. Namely, such weights are the most fa- 

vorable for DMU o when it is compared to all DMUs in the ex- 

panded technology T VRS −TO . 
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6. Summary and discussion 

To be specific, we limit our discussion to the optimal solutions 

of the input-oriented multiplier models under the assumption of 

CRS. The same observations extend, with obvious modifications, to 

the output-oriented CRS models and the models stated under the 

assumption of VRS. 

The conventional interpretation given by Charnes et al. 

(1978) to any optimal weights (u ∗, v ∗) to the standard (without 

weight restrictions) multiplier CRS model states that such weights 

represent DMU o in the best light in comparison to all observed 

DMUs. As proved by Podinovski (2001a) , the same interpretation 

remains valid for multiplier models with weight restrictions, pro- 

vided the latter are all homogeneous and not linked. For ease of 

reference, we state this as follows: 

Interpretation 1. Let all (homogeneous) weight restrictions 

(2.4) be not linked. Then any optimal weights (u ∗, v ∗) to the 

multiplier model (2) are the most favorable for DMU o if the latter 

is benchmarked against all observed DMUs. 

Interpretation 1 means that, for the weights (u ∗, v ∗) , the effi- 

ciency ratio Y ⊤ o u / X 
⊤ 
o v of DMU o attains its maximum in relation to 

the maximum of similar ratios across all observed DMUs. As shown 

by examples in Podinovski and Athanassopoulos (1998) and later 

literature, Interpretation 1 is no longer valid in the general case 

that includes linked or nonhomogeneous weight restrictions. This 

implies that the meaning of efficiency of DMU o in terms of the 

multiplier model with arbitrary weight restrictions has so far re- 

mained unclear. 

In contrast, the interpretation of efficiency in terms of the en- 

velopment model is far more complete. Podinovski (2004a) shows 

that the incorporation of weight restrictions of any types in the 

multiplier model leads to the expansion of the model of technol- 

ogy by means of dual terms (trade-offs). The envelopment model 

projects DMU o on the boundary of this technology (in input or 

output orientation). In other words, this model benchmarks DMU o 

against all DMUs in the entire expanded technology, and not only 

against the observed DMUs. 

The above observations indicate two problems with the conven- 

tional interpretation. 

First, while the efficiency of DMU o can be conventionally in- 

terpreted as the proportional improvement factor in the envelop- 

ment model with any weight restrictions (taking on the dual form 

of production trade-offs), the multiplier model allows the conven- 

tional interpretation of efficiency only for some types of weight re- 

striction. 

Second, even for homogeneous and not linked weight restric- 

tions, for which both models provide a meaningful interpretation, 

the two models benchmark DMU o against different sets of DMUs. 

As noted, for the multiplier model with weight restrictions this in- 

cludes the set of observed DMUs only, and for the dual envelop- 

ment model this includes the set of all DMUs in the technology, 

including unobserved units. 

Our development overcomes the above discrepancies by chang- 

ing the approach to the interpretation of the multiplier model. 

Based on Theorems 1 –3 and their discussion, we summarize our 

main results as follows. 

Interpretation 2. Any optimal weights (u ∗, v ∗) to the multi- 

plier model (2) with weight restrictions (2.4) (and, as shown in 

Remark 1 , with any weight restrictions (1) ) are the most favor- 

able for DMU o if the latter is benchmarked against all DMUs in 

the entire technology T CRS −TO . Furthermore, the weights (u ∗, v ∗) , 

while satisfying the weight restrictions because of the constraints 

of model (2) , are the best for DMU o among all nonnegative weights 

(u, v ) , and not only among those that satisfy the weight restric- 

tions. 

If all weight restrictions are homogeneous and not linked, 

then both Interpretations 1 and 2 are applicable. Otherwise, only 

the latter is correct. For example, both interpretations apply to 

the standard multiplier CRS model without weight restrictions. 

Namely, any optimal weights (u ∗, v ∗) in this model show DMU o in 

the best light in comparison to the set of observed DMUs and also 

in comparison to all DMUs in the standard CRS technology. 

Appendix A. Proofs 

Lemma 1. The optimal value θ ∗
1 of program ( 9 ) is attained, and θ ∗ = 

θ ∗
1 . 

Proof of Lemma 1. T CRS −TO is a polyhedral cone ( Podinovski, 

2015 ). By Theorem 19.1 in Rockafellar (1970) , it is generated by 

a finite set of directions (A k , B k ) ∈ R m + s , k = 1 , . . . , k ′ . Therefore 

T CRS −TO is the set of all pairs ( X , Y ) for which there exists a vec- 

tor μ ∈ R k 
′ 

+ such that 

X = 

k ′ 
∑ 

k =1 

μk A k , Y = 

k ′ 
∑ 

k =1 

μk B k . (A.1) 

Then program (3) is restated as follows: 

θ ∗ = min θ (A.2.1) 

subject to 
k ′ 

∑ 

k =1 

μk A k = θX o , (A.2.2) 

k ′ 
∑ 

k =1 

μk B k = Y o , (A.2.3) 

μ ≥ 0 , θ sign free . (A.2.4) 

By Definition 1 , T CRS −TO satisfies free disposability, and we can 

replace equalities in (A.2.2) and (A.2.3) by the appropriate inequal- 

ities. Taking the dual, we have: 

θ ∗ = max Y ⊤ o u (A.3.1) 

subject to X ⊤ o v = 1 , (A.3.2) 

B ⊤ k u − A ⊤ k v ≤ 0 , k = 1 , . . . , k ′ , (A.3.3) 

u, v ≥ 0 . (A.3.4) 

Any (X, Y ) ∈ T CRS −TO satisfies (A.1) with some vector μ ≥ 0. 

Multiplying each inequality k = 1 , . . . , k ′ in (A.3.3) by μk ≥ 0, and 

adding the resulting inequalities, we obtain 

Y ⊤ u − X ⊤ v ≤ 0 , ∀ (X, Y ) ∈ T CRS −TO . (A.4) 

Because (A.3.3) implies (A.4) , the incorporation of (A.4) in 

(A.3) does not affect its feasible region. By (A .1), (A .4) implies 

(A.3.3) . Omitting all inequalities (A.3.3) as redundant but keeping 

(A.4) , we obtain (2) . Therefore, θ ∗
1 = θ ∗ and is attained at any op- 

timal solution to (A.3) . �

Proof of Theorem 1. Let (u, v ) ∈ �. We need to prove that (u, v ) ∈ 

�1 . It suffices to show that (u, v ) satisfies (9.3) , ∀ (X, Y ) ∈ T CRS −TO . 

Indeed, any such unit ( X , Y ) satisfies (5) with some vectors λ, π , S X , 

S Y ≥ 0. Multiplying each inequality in (2.2) and (2.3) by the cor- 

responding components λj and π t , adding the resulting inequali- 

ties and noting that S X , S Y ≥ 0, we obtain (9.3) , as required. Fi- 

nally, let (u ∗, v ∗) ∈ �∗. Then, as proved, (u ∗, v ∗) is feasible in (9) . 
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From program (2) , Y ⊤ o u 
∗ = θ ∗. By Lemma 1 , θ ∗ = θ ∗

1 . Therefore, 

(u ∗, v ∗) ∈ �∗
1 . �

Lemma 2. The feasible region of program ( 9 ) is unchanged if con- 

straints (9.3) are required only for DMUs ( X , Y ) for which X ⊤ v > 0 , 

i.e., if inequalities (9.3) are replaced by 

Y ⊤ u − X ⊤ v ≤ 0 , ∀ (X, Y ) ∈ T CRS −TO : X 
⊤ 
v > 0 . (A.5) 

Proof of Lemma 2. We need to prove that, if (u, v ) satisfies (9.2), 

(9.4) and (A.5) , then (u, v ) satisfies (9.3) . Consider any ( ̃  X , ̃  Y ) ∈ 

T CRS −TO . If ˜ X 
⊤ 
v > 0 , (9.3) follows from (A.5) . Let ˜ X ⊤ v = 0 . Consider 

the sequence of units ( X k , Y k ), k = 1 , 2 , . . . , defined as follows: 

(X k , Y k ) = ( ̃  X , ̃  Y ) + (1 /k )(X o , Y o ) . (A.6) 

Because T CRS −TO is a polyhedral cone ( Podinovski, 2015 ), (X 
k , Y k ) ∈ 

T CRS −TO , ∀ k . From (9.2) and (A.6) , ( X k ) ⊤ v > 0 , ∀ k . By (A.5) , we have 

(Y k ) ⊤ u − ( X k ) ⊤ v ≤ 0 , ∀ k . Taking k → + ∞ , we have ˜ Y ⊤ u − ˜ X ⊤ v ≤ 0 , 

and (9.3) follows. �

Proof of Proposition 1. Define ( ̃  X , ̃  Y ) = (θ ∗
1 X o , Y o ) = (θ ∗X o , Y o ) . By 

Remark 1 , θ ∗ > 0. From (3) , ( ̃  X , ̃  Y ) ∈ T CRS −TO . By (9.2) , ˜ X ⊤ v ∗ = 

θ ∗X ⊤ o v 
∗ = θ ∗. Because (u ∗, v ∗) ∈ �∗

1 , 
˜ Y ⊤ u ∗ = θ ∗. Therefore, 

˜ Y ⊤ u ∗ − ˜ X ⊤ v ∗ = 0 . (A.7) 

�

Proof of Proposition 2. By Theorem 1 , it suffices to prove that 

�∗
1 ⊆ �∗. Let (u ∗, v ∗) ∈ �∗

1 . Because the objective functions in 

(2) and (9) are the same, it suffices to prove that (u ∗, v ∗) ∈ �. Be- 

cause (X j , Y j ) ∈ T CRS −TO , ∀ j = 1 , . . . , N, (9.3) implies (2.3) , and the 

latter is satisfied by (u ∗, v ∗) . It remains to prove that (u ∗, v ∗) satis- 

fies weight restrictions (2.4) . 

Assume there exists a t ′ for which the inequality (2.4) is not 

true, i.e., we have 

Q 
⊤ 
t ′ u 

∗ − P ⊤ t ′ v 
∗ > 0 . (A.8) 

Consider the unit ( ̃  X , ̃  Y ) > 0 defined in the proof of Proposition 1 . 

Because ( ̃  X , ̃  Y ) > 0 , there exists a small πt ′ > 0 such that 

( ̂  X , ̂  Y ) = ( ̃  X + πt ′ P t ′ , ̃  Y + πt ′ Q t ′ ) ≥ 0 . Therefore, ( ̂  X , ̂  Y ) ∈ T CRS −TO . 

From (A.7) and (A.8) , we have ˆ Y ⊤ u ∗ − ˆ X ⊤ v ∗ > 0 , which contradicts 

(9.3) . �

Proof of Theorem 2. By Theorem 1 , (u ∗, v ∗) is optimal in (9) and 

θ ∗ = θ ∗
1 . By footnote 3, (u ∗, v ∗) is feasible in (10) . Assume that 

(u ∗, v ∗) is not optimal in (10) . Then there exists a feasible solu- 

tion (u ′ , v ′ ) to (10) such that Y ⊤ o u 
′ / X ⊤ o v 

′ = θ ′ and θ ′ > θ ∗
1 . Then 

for any α > 0, (αu ′ , αv ′ ) is also feasible in program (10) , and 

the corresponding objective function (Y ⊤ o αu ′ ) / (X ⊤ o αv ′ ) = θ ′ . Define 

α′ such that X ⊤ o α
′ 
v ′ = 1 . (By footnote 3, X ⊤ o v 

′ > 0 , and we have 

α′ = 1 / (X ⊤ o v 
′ ) .) Then (α′ u ′ , α′ 

v ′ ) is feasible in (9) . Indeed, inequal- 

ities (10.2) are true for all (X, Y ) ∈ T CRS −TO such that X 
⊤ 
v > 0 . This 

implies (A.5) . By Lemma 2 , this implies (9.3) . The corresponding 

value of the objective function (9.1) is equal to θ ′ > θ ∗
1 , which con- 

tradicts the optimality of θ ∗
1 in (9) . �

Proof of Proposition 3. Define α = 1 / (X o v 
∗) > 0 . Then (u ′ , v ′ ) = 

(αu ∗, αv ∗) is also optimal in (10) . Repeating the end of the proof of 

Theorem 2 , (u ′ , v ′ ) is feasible in (9) . Because θ ∗
2 = (Y ⊤ o u 

′ ) / (X ⊤ o v 
′ ) = 

Y ⊤ o u 
′ and θ ∗

2 = θ ∗
1 , (u ′ , v ′ ) is optimal in (9) . By Proposition 1 , 

Y ⊤ o u 
′ = θ ∗X ⊤ o v 

′ . Dividing this equality by α, we obtain Y ⊤ o u 
∗ = 

θ ∗X ⊤ o v 
∗, and the proof follows. �

Proof of Theorem 3. To address potential division by zero in pro- 

gram (11) , we clarify its statement as follows: 

θ ∗
3 = max 

(u, v ) ∈ �3 

(

Y ⊤ o u / X 
⊤ 
o v 

sup (X,Y ) ∈T u, v { Y 
⊤ u / X ⊤ v } 

)

, (A.9) 

where the sets �3 and T u, v are defined as follows: 

�3 = 
{

(u, v ) ≥ 0 | X ⊤ o v > 0 , Y ⊤ o u > 0 
}

, 

T u, v = 
{

(X, Y ) ∈ T CRS −TO | X 
⊤ 
v > 0 

}

. 

Note that (u ∗, v ∗) ∈ �3 and hence �3 � = ∅ . Indeed, by (2.2) , X ⊤ o v 
∗ = 

1 > 0 and, by (2.1) and Remark 2 , Y ⊤ o u 
∗ = θ ∗ > 0 . Furthermore, for 

any (u, v ) ∈ �3 , (X o , Y o ) ∈ T u, v . Therefore, for all (u, v ) ∈ �3 , the set 

T u, v � = ∅ and the supremum in the denominator of (A.9) is greater 

than zero. If for some weights (u, v ) ∈ �3 the supremum in the 

denominator of (A.9) is unbounded, the expression in parentheses 

is considered to be equal to zero—see Example 3 in Appendix B . 

By Proposition 3 , for the weights (u ∗, v ∗) , the objective func- 

tion (expression in parentheses) of program (A.9) is equal to θ ∗. 

Therefore we have θ ∗
3 ≥ θ ∗. 

Suppose (u ∗, v ∗) is not optimal in program (A.9) . Then there ex- 

ists a (u ′ , v ′ ) ∈ �3 such that 

ψ (u ′ , v ′ ) = 
Y ⊤ o u 

′ / X ⊤ o v 
′ 

sup (X,Y ) ∈T u ′ , v ′ 
{ Y ⊤ u ′ / X ⊤ v ′ } 

= θ ′ > θ ∗. (A.10) 

Note that, for any α > 0, (u ′ , αv ′ ) ∈ �3 and ψ (u ′ , αv ′ ) = 

ψ (u ′ , v ′ ) = θ ′ . Define 

α′ = sup 
(X,Y ) ∈T u ′ , v ′ 

{ Y ⊤ u ′ / X ⊤ v ′ } . 

From (A.10) , 0 < α′ < + ∞ . Define ( ̃  u , ̃  v ) = (u ′ , α′ 
v ′ ) . Then 

sup (X,Y ) ∈T ̃ u , ̃ v 
{ Y ⊤ ̃  u / X ⊤ ̃  v } = 1 and ψ ( ̃  u , ̃  v ) = Y ⊤ o ˜ u / X 

⊤ 
o ˜ v = θ ′ . Therefore, 

( ̃  u , ̃  v ) is feasible in program (10) , and the corresponding value of 

the objective function (10.1) is equal to θ ′ . By (A.10) , θ ′ > θ ∗. This 

contradicts Theorem 2 , according to which θ ∗ is the optimal value 

of program (10) . �

Lemma 3. The maximum in program ( 14 ) is attained and ˆ θ ∗ = ˆ θ ∗
1 . 

Proof of Lemma 3. The proof is similar to the proof of Lemma 1 . 

Because T VRS −TO is a polyhedral set ( Podinovski, 2015 ), it is gener- 

ated by a finite number of points (A k , B k ) ∈ R m + s , k = 1 , . . . , ̃  k , and 

directions (A k , B k ) ∈ R m + s , k = ̃  k + 1 , . . . , k ′ ( Rockafellar, 1970 , The- 

orem 19.1). Therefore T VRS −TO is the set of all units ( X , Y ) for which 

there exists a vector μ ∈ R k 
′ 

+ such that 

X = 

k ′ 
∑ 

k =1 

μk A k , Y = 

k ′ 
∑ 

k =1 

μk B k , 

˜ k 
∑ 

k =1 

μk = 1 . (A.11) 

Repeating the proof of Lemma 1 , we have 

ˆ θ ∗ = max Y ⊤ o u + u o (A.12.1) 

subject to X ⊤ o v = 1 , (A.12.2) 

B ⊤ k u − A ⊤ k v + u o ≤ 0 , k = 1 , . . . , ̃  k , (A.12.3) 

B ⊤ k u − A ⊤ k v ≤ 0 , k = ˜ k + 1 , . . . , k ′ , (A.12.4) 

u, v ≥ 0 . (A.12.5) 

Any (X, Y ) ∈ T VRS −TO satisfies (A.11) with some μ ≥ 0. Multiply- 

ing each inequality k = 1 , . . . , k ′ in (A.12.3) and (A.12.4) by μk ≥ 0 

and adding the resulting inequalities, we obtain 

Y ⊤ u − X ⊤ v + u 0 ≤ 0 , ∀ (X, Y ) ∈ T VRS −TO . (A.13) 

Because inequalities (A.12.3) and (A.12.4) imply (A.13) , the incor- 

poration of inequalities (A.13) in program (A.12) does not affect 

its feasible region. Note that in the resulting program, constraints 

(A.12.3) follow from (A.13) and can be omitted. Let us prove that 

inequalities (A.12.4) also follow from (A.13) . Consider any k = ̃  k + 
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Table A.3 

DMUs in Example 2 . 

DMU Input Output 1 Output 2 

A 1 1 1 

B 1 2 0 

Fig. A.2. Technology T CRS −TO in Example 2 . 

1 , . . . , k ′ . By (A.11) , (X, Y ) = (A 1 + μk A k , B 1 + μk B k ) ∈ T VRS −TO , ∀ μk 

> 0. The corresponding inequality (A.13) takes on the form: 

( B 1 + μk B k ) 
⊤ u − ( A 1 + μk A k ) 

⊤ 
v + u 0 ≤ 0 . (A.14) 

Let (u, v , u o ) satisfy (A.13) and, therefore, (A.14) . Dividing both 

sides of (A.14) by μk > 0 and taking μk → + ∞ , we obtain in- 

equality k in (A.12.4) . Therefore, all inequalities (A.12.4) follow from 

(A.13) and can be omitted. Consequently, program (A.12) can be re- 

stated as (14) , and ˆ θ ∗ = ˆ θ ∗
1 . �

Proof of Theorem 4. The proof is similar to the proof 

of Theorem 1 . Let (u, v , u 0 ) ∈ ˆ �. We need to prove that 

(u, v , u 0 ) satisfies (14.3) , ∀ (X, Y ) ∈ T VRS −TO . Indeed, ( X , Y ) satis- 

fies Definition 2 with some vectors λ, μ, S X , S Y ≥ 0. Multiply- 

ing (12.2) and (12.3) by the corresponding λj and π t , adding 

the resulting inequalities and noting that S X , S Y ≥ 0, we ob- 

tain (14.3) . Therefore, (u, v , u 0 ) ∈ ˆ �1 . Finally, let (u 
∗, v ∗, u ∗0 ) ∈ ˆ �∗. 

Then, as proved, (u ∗, v ∗, u ∗0 ) ∈ ˆ �1 . From (12) , Y ⊤ o u 
∗ + u ∗0 = ˆ θ ∗. By 

Lemma 3 , ˆ θ ∗ = ˆ θ ∗
1 . Therefore, (u 

∗, v ∗, u ∗0 ) ∈ ˆ �1 . �

Appendix B. Further examples 

Example 2. This example is complementary to Section 4.1 . It 

shows that generally � � = �1 and �
∗ � = �∗

1 , and also illustrates 

Proposition 2 . Consider technology T CRS −TO generated by the sin- 

gle DMU A shown in Table A.3 and the single weight restriction 

u 1 − u 2 ≤ 0 . This corresponds to the following production trade-off

that affects only outputs: P = (0) , Q = (1 , −1) ⊤ . 

Fig. A.2 shows the section of technology T CRS −TO in the output 

dimensions, for the level of input equal to 1. In particular, the unit 

square ODAC is the section of the standard CRS technology (with- 

out the weight restriction) generated by DMU A . 

According to formula (5) , the trade-off ( P , Q ) expands the tech- 

nology as follows. Applying trade-off Q = (1 , −1) ⊤ to DMU A in 

proportion π = 1 , we add 1 to Output 1 and simultaneously sub- 

tract 1 from Output 2. This adds DMU B to the technology. Apply- 

ing the same trade-off in proportions 0 < π < 1, we generate the 

line AB . By the assumption of free disposability, the entire trian- 

gle ABC is added to the technology. Overall, the section of tech- 

nology T CRS −TO in the output dimensions is polyhedron ABOD . (The 

full technology is the polyhedral cone generated by this section.) 

Fig. A.3. Feasible regions and optimal solutions in Example 2 . 

Consider programs (2) and (9) . The former is stated as follows 

(we note that v 1 = 1 ): 

θ ∗ = max 1 u 1 + 1 u 2 (A.15.1) 

subject to 1 v 1 = 1 , (A.15.2) 

1 u 1 + 1 u 2 ≤ 1 , (A.15.3) 

1 u 1 − 1 u 2 ≤ 0 , (A.15.4) 

u 1 , u 2 , v 1 ≥ 0 . (A.15.5) 

The feasible region � of the above program consists of all vec- 

tors (u 1 , u 2 , v 1 ) such that v 1 = 1 and the subvector ( u 1 , u 2 ) is any 

point in the shaded triangle OFG in Fig. A.3 . 

Now refer to program (9) . From Fig. A.2 observe that T CRS −TO 

coincides with the standard CRS technology generated by DMUs 

A and B (without weight restrictions). It is straightforward to ver- 

ify that the feasible region of program (9) remains unchanged if 

the infinite number of inequalities (9.3) are replaced by just two 

inequalities for DMUs A and B . This leads to the following pro- 

gram: 

θ ∗
1 = max 1 u 1 + 1 u 2 

subject to 2 u 1 − 0 u 2 ≤ 0 , 

and (A .15.2), (A .15.3) and (A.15.5) . (A.16) 

The feasible region �1 of this program (in terms of output weights 

u 1 and u 2 ) is the shaded polyhedron OFGH in Fig. A.3 . Observe that 

� � = �1 . 

Furthermore, the sets of optimal solutions �∗ and �∗
1 to pro- 

grams (A.15) and (A.16) (in terms of weights u 1 and u 2 ) are iden- 

tical and coincide with the line segment FG . This observation is 

consistent with Proposition 2 —note that all inputs and outputs of 

DMU A are strictly positive. 

Now consider the assessment of efficiency of DMU B whose 

Output 2 is zero. 9 This requires changing the objective functions 

of programs (A.15) and (A.16) to 

2 u 1 + 0 u 2 . (A.17) 

In program (A.15) with its objective function replaced by (A.17) , the 

only optimal weights (u ∗1 , u 
∗
2 ) = (0 . 5 , 0 . 5) correspond to the single 

9 The fact that DMU B is unobserved is unimportant: we can always expand the 

original data set and include B as an observed DMU. This does not change our 

example. 
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Table A.4 

DMUs in Example 3 . 

DMU Input 1 Input 2 Output 

A 1 0 1 

B 0 1 1 

C ( λ) λ 1 − λ 1 

point G . In the similarly modified program (A.16) , the entire seg- 

ment GH represents optimal weights (u ∗1 , u 
∗
2 ) . This shows that, if 

the assumption of Proposition 2 is not true (note that DMU B does 

not satisfy it), then generally �∗ � = �∗
1 . 

Example 3. This example shows that the supremum in the denom- 

inator of program (11) may be unbounded (equal to + ∞ ), as noted 

in the proof of Theorem 3 . Consider technology T CRS −TO generated 

by DMUs A and B in Table A.4 . (In this example no weight restric- 

tions are specified, and T CRS −TO is the standard CRS technology.) 

Define DMU C(λ) = λA + (1 − λ) B ∈ T CRS −TO , for all λ ∈ [0, 1]. 

The input and output vectors of DMU C ( λ) are, respectively, X(λ) = 

(λ, 1 − λ) ⊤ and Y (λ) = (1) , as shown in Table A.4 . 

Suppose ( X o , Y o ) in program (11) is DMU A . Consider the 

weights (u ′ 1 , v 
′ 
1 , v 

′ 
2 ) = (1 , 1 , 0) . Then X ⊤ o v 

′ = 1 and Y ⊤ o u 
′ = 1 . 

Note that X(λ) v ′ = λv ′ 1 + (1 − λ) v ′ 2 = λ > 0 and Y (λ) u ′ = 1 u ′ 1 = 

1 . The ratio ( Y ( λ) u ′ ) / ( X( λ) v ′ ) → + ∞ as λ → 0+ . This shows that, 

for the weights (u ′ 1 , v 
′ 
1 , v 

′ 
2 ) , the supremum in (11) is unbounded, 

even if taken with respect to DMUs (X, Y ) ∈ T CRS −TO for which 

X ⊤ v ′ > 0 . 
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