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a b s t r a c t 

The notion of returns to scale (RTS) is well-established in data envelopment analysis (DEA). In the variable 

returns-to-scale production technology, the RTS characterization is closely related to other scale charac- 

teristics, such as the scale elasticity, most productive scale size (MPSS), and global RTS types indicative of 

the direction to MPSS. In recent years, a number of alternative production technologies have been devel- 

oped in the DEA literature. Most of these technologies are polyhedral, and hence are closed and convex 

sets. Examples include technologies with weakly disposable undesirable outputs, models with weight re- 

strictions and production trade-offs, technologies that include several component production processes, 

and network DEA models. For most of these technologies, the relationship between RTS and other scale 

characteristics has remained unexplored. The theoretical results obtained in this paper establish such re- 

lationships for a very large class of closed convex technologies, of which polyhedral technologies are an 

important example. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The notion of returns to scale (RTS) is well-established in data 

envelopment analysis (DEA) — see, e.g., Cooper, Seiford, and Tone 

(20 07) , Ray (20 04) and Thanassoulis, Portela, and Despi ́c (2008) . 

Extending the earlier results of Banker (1984) and Banker and 

Thrall (1992) , the DEA literature has primarily focused on the def- 

inition and evaluation of RTS in the variable returns-to-scale (VRS) 

production technology, for which several different methods are 

now available (for a review, see Banker, Cooper, Seiford, and Zhu, 

2011 , and Sahoo & Tone, 2015 ). 

The RTS characterization of decision making units (DMUs) is 

also related to the notions of scale efficiency and most produc- 

tive scale size (MPSS) introduced by Banker, Charnes, and Cooper 

(1984) and Banker (1984) . Further connections can be made to 

the notion of global RTS (GRS) introduced by Podinovski (2004a) , 

Podinovski (2004b) . The GRS characterization is global in the sense 

that its types are indicative of the direction to MPSS and are not 

defined by the local (marginal) properties of production function. 

In the VRS technology, some relevant known results describing 

the relationship between RTS and other scale characteristics can be 

summarized as follows. 

1. A standard procedure for testing if a DMU is at MPSS arises 

from the definition of MPSS by Banker (1984) . It is based on 

evaluation of input or output radial efficiency of the DMU 

in the reference constant returns-to-scale (CRS) technology 

of Charnes, Cooper, and Rhodes (1978) , which, from a gen- 
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eral perspective, is the cone technology generated by the VRS 

technology. 

2. An alternative way to test for MPSS is to evaluate the type of 

RTS exhibited by a DMU. Namely, a DMU is at MPSS if and only 

if it exhibits CRS ( Banker & Thrall, 1992 ). 

3. The GRS characterization of DMUs in the VRS technology, while 

generally different from the conventional local RTS character- 

ization, in the case of VRS technology coincides with the lat- 

ter. This effectively follows from Proposition 1 proved by Banker 

(1984) . 

In recent years, a number of new production technologies have 

been developed and studied in the DEA literature. Most of these 

technologies are polyhedral (and therefore convex) sets in the 

input and output dimensions. Podinovski, Chambers, Atici, and 

Deineko (2016) refer to such technologies as polyhedral technolo- 

gies. 1 

The class of polyhedral technologies is very large and includes 

most of the known convex DEA technologies, such as the CRS 

and VRS technologies of Charnes et al. (1978) and Banker et al. 

(1984) . Further examples include the VRS and CRS technologies 

expanded by weight restrictions or production trade-offs ( Atici 

& Podinovski, 2015; Joro & Korhonen, 2015; Podinovski, 2004d; 

2007; 2015; 2016; Podinovski & Bouzdine-Chameeva, 2013; 2015 ), 

the weakly disposable VRS technology ( Kuosmanen, 2005; Kuos- 

manen & Kazemi Matin, 2011; Kuosmanen & Podinovski, 2009 ), 

1 In a finite-dimensional space R n a polyhedral set is defined as the intersection 

of a finite number of closed half-spaces ( Rockafellar, 1970 ). 
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the hybrid returns-to-scale (HRS) technology ( Podinovski, 2004c; 

Podinovski, Ismail, Bouzdine-Chameeva, & Zhang, 2014 ), the con- 

vex CRS technology with exogenously fixed inputs and outputs 

( Podinovski & Bouzdine-Chameeva, 2011 ), some models of tech- 

nologies with multiple component processes ( Cherchye, De Rock, 

Dierynck, Roodhooft, & Sabbe, 2013; Cherchye, De Rock, & Walheer, 

2015; 2016; Cook & Zhu, 2011 ) and various network DEA models 

(see, e.g., Kao, 2014 ; Sahoo, Zhu, Tone, and Klemen, 2014 ). 

It is clear that RTS and related scale characterizations 

such as MPSS are important for all polyhedral technologies. 

Thus, several authors develop bespoke methodologies for eval- 

uation of RTS in particular technologies (see, e.g., Tone, 2001 ; 

Sahoo et al., 2014 ). Podinovski et al. (2016) develop a univer- 

sal methodology for the RTS characterization of DMUs in any 

polyhedral technology. This approach uses linear programming 

techniques for calculation of one-sided scale elasticities that sub- 

sequently define the types of RTS. 

Although the current DEA literature allows us to define and 

evaluate the RTS types for any polyhedral technology, and further 

methods exist for their GRS characterization, the relationship be- 

tween RTS and GRS types (including MPSS) has so far remained 

unexplored. An exception here is the equivalence of RTS and GRS 

characterizations for convex technologies whose boundaries are 

smooth , established by Podinovski (2004a) . This result does not, 

however, apply to polyhedral technologies. 

This paper addresses the above gap. Its main contribution is 

the establishment of equivalence of local and global characteriza- 

tions of RTS in any polyhedral technology. In particular, this im- 

plies that a DMU exhibits CRS if and only if it is at MPSS. In fact, 

from the theoretical perspective, it is straightforward to generalize 

and prove this result in a larger class of closed convex technolo- 

gies, of which polyhedral technologies are a special case. 

From a practical perspective, the established equivalence of the 

notions of RTS and GRS gives us a new tool for evaluating the 

GRS types in any polyhedral (and, more generally, closed and con- 

vex) technology, by evaluating the RTS types instead. More pre- 

cisely, standard methods for the evaluation of MPSS and GRS types 

require the use of reference technologies (such as the CRS, non- 

increasing and non-decreasing RTS technologies, if the underly- 

ing true technology is VRS). For many polyhedral technologies, 

their reference technologies may not be immediately available and 

would require further development before they could be used. The 

new theoretical results established in this paper allow us to avoid 

this and, instead, use the existing methodologies for evaluation of 

RTS. 

We illustrate the usefulness of the new results by a numeri- 

cal example involving the RTS and GRS characterizations of a VRS 

technology expanded by the specification of weight restrictions. 

We also discuss the application of new results to a two-stage net- 

work DEA model. 

2. The output response function 

Consider a production technology T ∈ R 
m + s 
+ , where m is the 

number of inputs and s is the number of outputs. 2 Elements of 

T are DMUs ( X , Y ), where X ∈ R m 
+ and Y ∈ R s + are the vectors of 

inputs and outputs, respectively. 

Unless stated otherwise, the only two general assumptions we 

make about T is that it is a closed and convex set. 3 We refer to T 

2 The requirement that T is a subset of the nonnegative orthant R m + s + is needed 

for the correct definition of RTS types and MPSS. However, this requirement is not 

needed and is omitted for the definition and calculation of the scale elasticity and 

other marginal scale characteristics. In the case of polyhedral technologies this is 

demonstrated by Podinovski et al. (2016) . 
3 A further Assumption 1 additionally implies that technology T does 

not allow unlimited production. (This follows from Theorem 2 proved in 

as a closed convex technology. As noted above, a practically im- 

portant example of such technologies is the class of polyhedral 

technologies. 

Consider any DMU (X o , Y o ) ∈ T , where T is a closed convex 

technology. Throughout this paper we assume that X o � = ∅ and 

Y o � = ∅ . Central to our development is the output response function 

β̄(α) defined as follows: 

β̄(α) = max { β | (αX o , βY o ) ∈ T , β ∈ R } . (1) 

In formula (1) , the scalar α defines a proportional change to the 

input vector X o , and β defines a proportional change to the output 

vector Y o . The output response function β̄(α) is equal to the max- 

imum proportion β of output vector Y o that can be produced in 

technology T from the input vector αX o . 
4 

We also make the following assumption: 

Assumption 1. DMU ( X o , Y o ) is output radial efficient, i.e., 

β̄(1) = max { β | (X o , βY o ) ∈ T , β ∈ R } = 1 . 

Let Ŵ be the domain of function β̄(α) , i.e., Ŵ ∈ R is the set of 

all α for which there exists a β such that (αX o , βY o ) ∈ T . Clearly, 

1 ∈ Ŵ. 

Proposition 1. 

(i) Ŵ is a closed interval in R + ; 

(ii) For all α ∈ Ŵ, the maximum in (1) is finite and is attained. 

(iii) β̄(α) is a continuous and concave function on Ŵ. 

The proofs of Proposition 1 and the other statements are given 

in Appendix A . 

The RTS characterization of DMUs developed below is based on 

the notion of right-hand and left-hand derivatives of the function 

β̄(α) , denoted β̄ ′ 
+ (α) and β̄ ′ 

−(α) , respectively. As follows from 

Theorem 24.1 in Rockafellar (1970) restated for a concave function 

β̄(α) , we have the following properties of the one-sided deriva- 

tives β̄ ′ 
+ (α) and β̄ ′ 

−(α) taking values from the interval [ −∞ , + ∞ ] : 

1. The one-sided derivatives β̄ ′ 
+ (α) and β̄ ′ 

−(α) exist for all α ∈ Ŵ. 

For any α interior to Ŵ, both β̄ ′ 
+ (α) and β̄ ′ 

−(α) are finite. 

2. If α is the left extreme point of Ŵ, β̄ ′ 
+ (α) may be finite or + ∞ . 

Similarly, if α is the right extreme point of Ŵ, β̄ ′ 
−(α) may be 

finite or −∞ . 5 

3. For all α1 , α2 , α3 ∈ Ŵ such that α1 < α2 < α3 , we have the 

following monotonicity property: 

β̄ ′ 
+ (α1 ) ≥ β̄ ′ 

−(α2 ) ≥ β̄ ′ 
+ (α2 ) ≥ β̄ ′ 

−(α3 ) . (2) 

For convenience, we also formally define β̄ ′ 
−(α) = + ∞ if α is 

the left extreme point of Ŵ, and β̄ ′ 
+ (α) = −∞ if α is the right ex- 

treme point of Ŵ. Although neither of these one-sided derivatives 

exists in the classical sense, this definition helps us to avoid giving 

a special consideration of the extreme points of Ŵ in the definition 

of RTS below. 

Remark 1. If technology T is polyhedral, in addition to the prop- 

erties stated in Proposition 1 , the function β̄(α) is also piecewise 

Podinovski and Bouzdine-Chameeva, 2013 .) Technology T allows unlimited pro- 

duction if there exists an input vector X ∗ and output vector Y ∗ � = 0 such that 

sup { β | (X ∗, βY ∗) ∈ T } = + ∞ . 
4 The function β̄(α) is closely related to the directional distance function of 

Chambers, Chung, and Färe (1998) assessed at DMU ( X o , Y o ) in the direction of vec- 

tor Y o . For details of this correspondence, see, e.g., Section 3.2 in Podinovski et al. 

(2016) . 
5 For example, consider the closed convex technology T with a single input and 

output that contains all DMUs located under the curve Y = 1 + (X − 1) 1 / 2 , where X 

≥ 1, Y ≥ 0. Then DMU (X o , Y o ) = (1 , 1) satisfies Assumption 1 , and we have β̄ ′ 
+ (1) = 

+ ∞ . 
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linear on Ŵ. 6 This in turn implies that, if α is the left extreme point 

of Ŵ, β̄ ′ 
+ (α) is finite. Similarly, if α is the right extreme point of Ŵ, 

β̄ ′ 
−(α) is finite. 

As becomes clear below, of particular importance to us are the 

one-sided derivatives evaluated at α = 1 . For any polyhedral tech- 

nology, both derivatives can be calculated using the linear pro- 

grams developed by Podinovski et al. (2016) . 

3. The one-sided scale elasticity 

If α = 1 is an interior point of domain Ŵ and the function β̄(α) 

is differentiable at α = 1 , the scale elasticity ε( X o , Y o ) evaluated at 
DMU ( X o , Y o ) can be defined as 

ε(X o , Y o ) = β̄ ′ (1) . (3) 

The meaning of this definition is straightforward. To be spe- 

cific, let ε(X o , Y o ) = 2 . Suppose we increase the input vector X o in 

a small proportion, e.g., by 1% (corresponding to α = 1 . 01 ). Then 

the maximum proportion of vector Y o possible in technology T 

increases (to the first degree of approximation) by ε(X o , Y o ) = 2% 

(which corresponds to β = 1 . 02 ). 7 Similarly, if we reduce the com- 

ponents of vector X o by 1%, the maximum proportion of vector Y o 
is reduced by ε(X o , Y o ) = 2% ( α = 0 . 99 and β = 0 . 98 ). 

Podinovski and Førsund (2010) prove that the above defini- 

tion of scale elasticity ε( X o , Y o ), effectively also used by Banker 
(1984) and Banker and Thrall (1992) , is equivalent to its standard 

definition given in terms of partial derivatives of the production 

function �( X , Y ) ( Hanoch, 1970; Panzar & Willig, 1977 ) 8 and, pro- 

vided T is freely disposable in all outputs, to its definition via the 

notion of local degrees of homogeneity h ( Panzar & Willig, 1977; 

Starrett, 1977 ). 

Clearly, for general convex production technologies, the func- 

tion β̄(α) cannot be assumed differentiable, and the standard eco- 

nomic notion of scale elasticity (3) is undefined. In particular, 

this definition does not apply to the VRS technology. This prob- 

lem is overcome by the introduction of one-sided (right-hand and 

left-hand) scale elasticities ε + (X o , Y o ) and ε −(X o , Y o ) evaluated at 

DMU o , which correspond to the one-sided derivatives β̄ ′ 
+ (1) and 

β̄ ′ 
−(1) . 

For the conventional VRS technology this approach was pi- 

oneered by Banker and Thrall (1992) and further explored by 

Fukuyama (20 0 0) , Hadjicostas and Soteriou (20 06) , Podinovski, 

Førsund, and Krivonozhko (2009) , Podinovski and Førsund (2010) , 

and Zelenyuk (2013) . This approach is extended to the entire class 

of polyhedral technologies by Podinovski et al. (2016) . 9 

Because, as shown above, the one-sided derivatives of function 

β̄(α) are well-defined in the more general case of closed pro- 

duction technologies, the definition of one-sided scale elasticities 

based on them is straightforward. 

Let T be a closed convex technology, and let DMU (X o , Y o ) ∈ T 

satisfy Assumption 1 . 

6 This follows from Proposition 2 stated in Podinovski et al. (2016) , which is a 

restatement of a known result of sensitivity analysis in linear optimization. 
7 The corresponding difference quotent is equal to ( ̄β(α) − β̄(1)) / (α − 1) = 

(1 . 02 − 1) / (1 . 01 − 1) = 2 . 
8 The notion of production function �( X , Y ) is used to give an implicit definition 

of the production frontier by the equation �(X, Y ) = 0 . Such a definition requires 

that the function �( X , Y ) satisfies certain properties, e.g., the monotonicity in X and 

Y ( Hanoch, 1970; Panzar & Willig, 1977 ). 
9 Theoretical foundations of this approach are explored by Chambers and Färe 

(2008) . In a further extension, Podinovski and Førsund (2010) , Atici and Podinovski 

(2012) and Podinovski et al. (2016) consider partial one-sided scale elasticities that 

correspond to the case in which a subset of input and output measures responds to 

marginal changes of another subset. 

Definition 1. The one-sided scale elasticities at DMU ( X o , Y o ) are 

defined as follows: 

ε + (X o , Y o ) = β̄ ′ 
+ (1) , 

ε −(X o , Y o ) = β̄ ′ 
−(1) . 

Note that the middle inequality in (2) implies 

ε + (X o , Y o ) ≤ ε −(X o , Y o ) . 

If ε + (X o , Y o ) = ε −(X o , Y o ) (or, equivalently, β̄ ′ 
+ (1) = β̄ ′ 

−(1) , and 

the function β̄(α) is therefore differentiable at α = 1 ), we have 

ε(X o , Y o ) = ε + (X o , Y o ) = ε −(X o , Y o ) . 

If ε + (X o , Y o ) < ε −(X o , Y o ) , the scale elasticity (elasticity of re- 

sponse of output vector Y o to marginal changes of input vector 

X o ) is different if vector X o is proportionally increased or reduced. 

For example, let ε + (X o , Y o ) = 0 . 5 and ε −(X o , Y o ) = 1 . 5 . Then, if we 

increase the input vector X o proportionally by 1%, the maximum 

possible proportion of vector Y o increases by ε + (X o , Y o ) = 0 . 5% . On 

the other hand, if we reduce vector X o by 1%, the maximum pro- 

portion of vector Y o is reduced by ε −(X o , Y o ) = 1 . 5% . 

Remark 2. There exist two equivalent methods suitable for the 

calculation of one-sided scale elasticities at any DMU ( X o , Y o ). First, 

as noted in Remark 1, if technology T is polyhedral, the one-sided 

derivatives β̄ ′ 
+ (1) and β̄ ′ 

−(1) , and therefore the one-sided scale 

elasticities ε + (X o , Y o ) and ε −(X o , Y o ) , can be computed using the 

linear programming approach of Podinovski et al. (2016) . 

Second, as is well-known from the literature, if T is the VRS 

technology of Banker et al. (1984) , these one-sided elasticities can 

equivalently be defined as follows: 

ε + (X o , Y o ) = 1 − ω max , 

ε −(X o , Y o ) = 1 − ω min , 
(4) 

where ω max and ω min are, respectively, the maximum and mini- 

mum of the sign free variable ω dual to the normalizing equal- 

ity 1 ⊤ λ = 1 , taken over the set of optimal solutions to the output- 

oriented multiplier VRS model ( Førsund & Hjalmarsson, 2004 ). A 

similar formula to (4) can be given in terms of variable ω cal- 

culated in the input-oriented VRS model ( Førsund & Hjalmars- 

son, 2004; Podinovski et al., 2009; Zelenyuk, 2013 ). Podinovski 

et al. (2016) extend formula (4) and its analogue based on the 

input-oriented model, to any polyhedral technology. We use for- 

mula (4) for the calculation of one-sided scale elasticities in the 

example in Section 8 . 

4. Returns to scale 

According to the standard definition (see, e.g., Førsund & Hjal- 

marsson, 2004 ), the type of RTS exhibited by an output efficient 

DMU ( X o , Y o ) is defined by the scale elasticity assessed at this 

DMU. In particular, DMU ( X o , Y o ) exhibits increasing, decreasing or 

constant RTS (IRS, DRS or CRS) if ε( X o , Y o ) > 1, ε( X o , Y o ) < 1, or 

ε(X o , Y o ) = 1 , respectively. 

Banker and Thrall (1992) generalize this definition to the VRS 

technology by utilizing the one-sided scale elasticities (see also 

Banker et al., 2011 . Podinovski et al. (2016) extend the approach of 

Banker and Thrall (1992) to all polyhedral technologies. Its further 

extension to any closed convex technology is also straightforward. 

Let, as above, T be a closed convex technology, and let DMU 

(X o , Y o ) ∈ T satisfy Assumption 1 . 10 

10 In the DEA literature, the RTS characterization is often limited to fully efficient 

DMUs. However, there is no real reason for this as a weaker Assumption 1 of output 

radial efficiency of DMU o suffices for the correct definition of RTS ( Podinovski et al., 

2016; Podinovski & Førsund, 2010 ). The notion of RTS is sometimes also extended to 

DMUs that are not output radial efficient. This requires that DMU o is first projected 
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Definition 2. DMU ( X o , Y o ) exhibits 

(i) IRS if 1 < ε + (X o , Y o ) ≤ ε −(X o , Y o ) ; 

(ii) DRS if ε + (X o , Y o ) ≤ ε −(X o , Y o ) < 1 ; 

(iii) CRS if ε + (X o , Y o ) ≤ 1 ≤ ε −(X o , Y o ) . 

Several remarks with respect to the above definition are worth 

making. First, the IRS and DRS types are conceptually consistent 

with the standard definition of RTS that applies if the scale elas- 

ticity ε( X o , Y o ) exists. Consider, for example the case of IRS in 

Definition 2 . Although the elasticity of response of output vector 

Y o to marginal changes of input vector X o may generally be differ- 

ent in the case of vector X o increasing or decreasing, both mea- 

sures ε + (X o , Y o ) and ε −(X o , Y o ) are assumed to be greater than 1. 

Therefore, in both cases the proportional change (positive or nega- 

tive) to vector Y o is greater than the change to vector X o . Similarly, 

in the case of DRS, the proportional change to vector Y o described 

by ε + (X o , Y o ) and ε −(X o , Y o ) is less than the change to vector X o . 

Second, in the case of CRS in Definition 2 , we effectively have 

DRS if vector X o is marginally increased, and IRS if X o is reduced. 

This is of course not the standard notion of CRS that requires that 

the scale elasticity (and hence its both one-sided analogues) be 

equal to 1, but such a classification appears to be well-established 

in the literature (see, e.g., Banker et al., 2011; Banker & Thrall, 

1992 ). Furthermore, as we prove below, in this case DMU ( X o , 

Y o ) attains the maximum productivity on the domain Ŵ, i.e., is at 

MPSS. The latter is consistent with the standard CRS type. 

Third, suppose that vector X o cannot be proportionally reduced 

in technology T . (For example, this situation often arises in com- 

putations of scale elasticity in the VRS technology.) In this case 

α = 1 is the left extreme point of the interval Ŵ, and the left- 

hand derivative β̄ ′ 
−(1) is undefined. As noted above, in this case 

we formally define β̄ ′ 
−(1) = + ∞ , and so ε −(X o , Y o ) = + ∞ . Accord- 

ing to Definition 2 , this means that any DMU ( X o , Y o ) whose vec- 

tor X o cannot be proportionally reduced in T , cannot exhibit DRS. 

Moreover, whether DMU ( X o , Y o ) is classed as exhibiting IRS or 

CRS depends entirely on the right-hand scale elasticity ε + (X o , Y o ) . 
A similar observation applies if vector X o cannot be proportionally 

increased in T (although this possibility is more of theoretical in- 

terest as it cannot arise if T is freely disposable in all inputs, which 

is normally assumed). 

Remark 3. As follows from Remark 2 , if T is the VRS technology, 

Definition 2 can be restated in terms of the maximum and mini- 

mum values ω max and ω min of variable ω in the output-oriented 

VRS model using formulae (4) , and also in terms of ω evaluated 

in the input-oriented model (see, e.g., Sahoo et al., 2015 ). A simi- 

lar restatement is possible if T is a general polyhedral technology 

( Podinovski et al., 2016 ). 

Remark 4. It is intuitively clear that the shape of production 

frontier and the (one-sided) scale elasticities that characterize its 

different parts are generally sensitive to the set of observed DMUs 

on which the analysis is based. For the standard VRS technology 

of Banker et al. (1984) , Podinovski and Førsund (2010) prove 

that, if more DMUs are added to the sample and DMU o remains 

output radial efficient in the new (larger) VRS technology, then 

the left-hand scale elasticity ε −(X o , Y o ) cannot increase, while the 

right-hand scale elasticity ε + (X o , Y o ) cannot decrease. This implies 

that the interval [ ε + (X o , Y o ) , ε −(X o , Y o )] generally becomes nar- 

rower as more DMUs are added to the sample. By Definition 2 this 

on the boundary of the technology, e.g., by means of output radial maximization or 

input minimization. Provided the target DMU satisfies Assumption 1 (which is al- 

ways true for the output radial projections but is not necessarily true for the input 

projections), the type of RTS exhibited by the target DMU is assigned to the ineffi- 

cient DMU o . It is well-known that different projections of the same inefficient DMU 

may result in its different RTS characterizations (see, e.g., Banker et al., 2011 ). 

means that a DMU o classed as exhibiting IRS will remain in the 

same class if the sample is enlarged (provided DMU o still satisfies 

Assumption 1 in the enlarged VRS technology). Similarly, a DMU o 

exhibiting DRS, will exhibit DRS in a larger sample. However, a 

DMU o exhibiting CRS may exhibit any of the three types of RTS in 

the enlarged sample. 

5. Most productive scale size 

Consider any (not necessarily convex) production technology 

T . According to the definition given by Banker (1984) , a DMU 

(X o , Y o ) ∈ T is at MPSS if for all DMUs in the form (αX o , βY o ) ∈ T , 

where α > 0, we have β/ α ≤ 1. 11 Therefore, following Banker 

(1984) , DMU ( X o , Y o ) is at MPSS if the optimal value of the fol- 

lowing program is equal to 1: 

max β/α
s.t. (αX o , βY o ) ∈ T , 

α, β > 0 . 
(5) 

Obviously, if DMU ( X o , Y o ) is at MPSS, it is output radial efficient 

and therefore satisfies Assumption 1 . 

Program (5) can be simplified by introducing the reference cone 

extension T ∗ to technology T : 

T ∗ = 
{

(X, Y ) ∈ R 
m + s | ∃ ( ̃  X , ̃  Y ) ∈ T , δ ≥ 0 : (X, Y ) = δ( ̃  X , ̃  Y ) 

}

. 

Note that the optimal value of program (5) does not change if 

we replace T by T ∗ in its constraints. 12 We can subsequently nor- 

malize the feasible solutions by requiring that α = 1 and remove 

the nonnegativity conditions on variables α and β as redundant. 13 

Therefore, the optimal value of program (5) is equal to the optimal 

value of the following program: 

max β
s.t. (X o , βY o ) ∈ T ∗. 

(6) 

Program (6) measures the output radial efficiency of DMU ( X o , 

Y o ) in technology T 
∗. Therefore, DMU ( X o , Y o ) is at MPSS if and 

only if it is output radial efficient in the cone technology T ∗ gen- 

erated by T . If T is the VRS technology of Banker et al. (1984) , 

program (6) is the standard output-oriented CRS model of Charnes 

et al. (1978) . 

6. Global returns to scale 

The notion of global returns to scale (GRS) was introduced by 

Podinovski (2004a) , Podinovski (2004b) under extremely weak as- 

sumptions about the production technology T , namely, that the 

latter does not allow free and unlimited production. 14 No other as- 

sumptions about T are required. For example, T is not required to 

be convex, disposable according to any definition or even closed. 

The types of GRS are indicative of the direction in which 

the size of operations of DMU o should change while ap- 

proaching its MPSS. To state this formally and following 

Podinovski (2004a) , let T ∈ R 
m + s 
+ be any technology that disallows 

free and unlimited production, and let DMU (X o , Y o ) ∈ T satisfy 

Assumption 1 . 

11 This standard definition is equivalently restated using the output response func- 

tion β̄(α) . Namely, DMU ( X o , Y o ) is at MPSS if β̄(α) /α ≤ 1 , for all α ∈ Ŵ�{0}. 
12 Any feasible solution in the resulting program (with T replaced by T ∗) can be 

stated as ( δα, δβ), where ( α, β) is feasible in (5) . Because (δβ) / (δα) = β/α, ∀ α, 

δ > 0, the feasible values of the objective function in (5) are not affected. 
13 Let ( α∗ , β∗) be an optimal solution to program (5) in which T is replaced by 

T ∗ . Then ( δα∗ , δβ∗) is also an optimal solution, for any δ > 0. By taking δ = 1 /α∗, 

we obtain the optimal solution (1, β∗/ α∗). Therefore, there always exists an optimal 

solution in the form (1, β). Program (6) identifies such a solution. 
14 Technology T allows free production if there exists a DMU (X ∗, Y ∗) ∈ T such 

that X ∗ = 0 and Y ∗ � = 0. The notion of unlimited production was defined in foot- 

note 3 . 
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Suppose that the optimal value of program (5) is attained at 

some ˆ α and ˆ β . Obviously, DMU ( ̂  αX o , ˆ βY o ) is at MPSS. Podinovski 

(20 04a) , Podinovski (20 04b) refers to this DMU as the scale refer- 

ence unit (SRU) of DMU ( X o , Y o ). 

If DMU ( X o , Y o ) is at MPSS, then ˆ α = ˆ β = 1 is an optimal so- 

lution to (5) , and ( ̂  αX o , ˆ βY o ) = (X o , Y o ) . Otherwise, DMU o is either 

smaller than its SRU ( ̂  αX o , ˆ βY o ) (if ˆ α, ˆ β > 1 ), or DMU o is larger 

than its SRU (if ˆ α, ˆ β < 1 ). 15 It is also possible that program (5) has 

multiple optimal solutions, each defining a different SRU of DMU o . 

In this case it is theoretically possible that DMU o is smaller than 

some of its SRUs and larger than the other. 16 

Definition 3 ( Podinovski, 2004a ) . DMU ( X o , Y o ) exhibits 

(i) global CRS (G-CRS) if DMU o is at MPSS; 

(ii) global IRS (G-IRS) if all its SRUs are larger than DMU o ; 

(iii) global DRS (G-DRS) if all its SRUs are smaller than DMU o ; 

(iv) global sub-constant CRS (G-SCRS) if some of its SRUs are 

smaller, and some larger, than DMU o , but DMU o is not at 

MPSS. 17 

In the general case program (5) may not have an optimal so- 

lution and its maximum (in this case more correctly referred to 

as the supremum) may not be attained. Consequently, an SRU of 

DMU o does not exist. In this case ( Podinovski, 2004a ) introduces 

an approximate notion of SRU referred to ε-SRU, and restates Def- 
inition 3 in the latter terms. 

Podinovski (2004a) shows that the type of GRS exhibited by 

DMU o can be tested by evaluating its output radial efficiency in 

technology T and two further reference technologies, namely, in 

the nonincreasing (NIRS) and nondecreasing (NDRS) returns-to- 

scale technologies generated by T . 18 The four types of GRS corre- 

spond to the four logical possibilities arising by comparison of the 

efficiencies of DMU o in the three technologies. 19 

It is worth noting that the local and global characterizations of 

RTS are conceptually different. The local characterization of RTS 

is based on the notion of scale elasticity (which can be general- 

ized using its one-sided analogues). Provided the efficient frontier 

is sufficiently smooth, the scale elasticity is a particular deriva- 

tive evaluated at DMU o (i.e., β̄ ′ (1) in our notation). This derivative 

depends only on a marginally small neighbourhood of DMU o or, 

equivalently, on a marginally small neighbourhood of α = 1 within 

the domain Ŵ. Therefore, the types of RTS are indicative of the di- 

15 By Lemma 2 in Podinovski (2004a) , ˆ α < 1 implies ˆ β < 1 , and ˆ α > 1 implies ˆ β > 

1 , so, for example, the case ˆ α < 1 and ˆ β > 1 is impossible. 
16 Let β∗ be the optimal value of program (6) . Then the condition (αX o , αβ∗Y o ) ∈ 

T , where α > 0, defines all SRUs of DMU o . The smallest SRU is found by minimizing 

α subject to the latter condition, and the largest SRU is identified by maximizing α

subject to the same condition. If T is a polyhedral technology, each of the latter 

two tasks requires solving an appropriately specified linear program. 
17 The G-SCRS type is primarily needed for the theoretical completeness of the 

GRS characterization, and may be observed in specially constructed illustrative ex- 

amples ( Podinovski, 2004a, 2004b ). In most practical applications, this type may 

be rarely observed, and, if technology T is convex, it is theoretically impossible 

( Podinovski, 2004a ). However, in the (nonconvex) free replication hull (FRH) tech- 

nology of Ray and Hu (1977) (see also Ray, 2004 , p. 144) the G-SCRS type may occur 

more naturally. For example, consider the FRH generated by two DMUs A = (1 , 1) 

and B = (1 . 5 , 1 . 2) , where the first component is input and the second is output. 

Both DMUs are output radial efficient. Note that DMU A and all its replications 

kA = (k, k ) , where k = 2 , 3 , . . . , are SRUs for DMU B . (The ratio of output to input 

is equal to 1 for DMU A and its replications, and 0.8 for DMU B .) Because DMU 

A is smaller than B , but its replications kA , k = 2 , 3 , . . . , are larger than B , DMU B 

exhibits G-SCRS. 
18 If T is free disposal hull (FDH) of Deprins, Simar, Tulkens (1984) , the output 

radial efficiency of DMU o in the corresponding reference technologies can be eval- 

uated by solving mixed integer linear programs developed by Podinovski (2004e) . 
19 This method of testing GRS is similar, but not identical, to the reference tech- 

nology method of testing RTS developed by Färe, Grosskopf, and Lovell (1983) , Färe, 

Grosskopf, and Lovell (1985) and further explored by Kerstens and Vanden Eeckaut 

(1999) and Briec, Kerstens, Leleu, and Vanden Eeckaut (20 0 0) . 

Fig. 1. The difference between the local and global RTS characterizations in a non- 

convex technology. 

rection that DMU o should undertake for immediate marginal im- 

provements of its productivity. For example, if DMU o exhibits IRS, 

its productivity will increase if DMU o increases the scale of its op- 

erations in a small proportion. 

In contrast, the GRS types are global characteristics. They in- 

dicate a direction that DMU o should undertake as it changes the 

scale of its operations towards its MPSS, even if moving in the 

identified direction in small steps might initially lead to a detri- 

ment to its productivity. 

For example, consider the nonconvex technology with a single 

input X and single output Y shown as the shaded area in Fig. 1 . 

Note that DMUs A , C and E exhibit local CRS, DMU B exhibits local 

DRS, and DMU D exhibits local IRS. From the global perspective, 

DMU A has the largest ratio of the output to the input, and is the 

only DMU that is at MPSS. Therefore, DMU A exhibits G-CRS. The 

other three DMUs B , C , D and E are larger than A and, therefore, all 

exhibit G-DRS. 

It is also worth emphasizing that the local characterization of 

RTS is defined only for sufficiently smooth (convex or noncon- 

vex) production technologies, as required for the definition of scale 

elasticity or its one-sided analogues. In contrast, the global charac- 

terization of GRS does not require that the technology be smooth. 

For example, the notion of GRS is fully applicable for the charac- 

terization of DMUs in free disposal hull (FDH) technology ( Deprins 

et al., 1984 ). 

7. Equivalence of local and global RTS characterizations 

As noted, in an arbitrary technology, the RTS and GRS character- 

izations are generally different. However, as proved by Podinovski 

(2004a , Theorem 7), if technology T is closed, convex and its fron- 

tier is sufficiently smooth, the two characterizations are equivalent. 

More precisely, in this case, subject to Assumption 1 , any DMU o 

exhibits G-CRS, G-IRS and G-DRS if and only if it exhibits local 

CRS, IRS and DRS, respectively. In this case, the G-SCRS type is 

impossible. 

For example, consider the convex technology depicted as the 

shaded area in Fig. 2 . Note that DMU B exhibits CRS and is at 

MPSS. DMU A exhibits IRS and should increase the scale of its op- 

erations to achieve its MPSS at B . Therefore, A exhibits G-IRS. Sim- 

ilarly, DMU C exhibits DRS and G-DRS. 
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Fig. 2. The equivalence of the local and global RTS characterizations in a convex 

technology. 

A related result by Banker, Chang, and Cooper (1996) implies 

that the RTS and GRS characterizations are also equivalent in the 

VRS technology, which is nonsmooth. 20 The recent development 

of various polyhedral technologies raises a question whether the 

equivalence of the corresponding RTS and GRS types could also be 

extended from the case of VRS to any such technology. 

Below we prove that the answer to the above question is pos- 

itive, and that this result is true not only for any polyhedral tech- 

nology, but also for a larger class of closed convex technologies. 

Let T be any closed convex technology, and let DMU o ∈ T sat- 

isfy Assumption 1 . 

Theorem 1. DMU o exhibits G-CRS, G-IRS or G-DRS if and only if it 

exhibits local CRS, IRS or DRS, respectively. The G-SCRS type is there- 

fore impossible. 

Corollary 1. DMU o is at MPSS if and only if it exhibits CRS. 

The equivalence of MPSS and the CRS type of RTS stated by 

Corollary 1 is well known in the case of conventional VRS tech- 

nology ( Banker & Thrall, 1992 ). This means that, in the VRS tech- 

nology, we can test for MPSS using two approaches. First, we can 

verify if the output radial efficiency of DMU o in the reference CRS 

technology is equal to 1, as in program (6) . Second, we can ver- 

ify if DMU o exhibits CRS (and is therefore at MPSS) by calculating 

the one-sided scale elasticities ε + (X o , Y o ) and ε −(X o , Y o ) or, equiva- 

lently, the maximum and minimum values ω max and ω min , as dis- 

cussed in Section 4 . 

Corollary 1 implies that we have the same two choices in any 

closed convex technology (most importantly, in any polyhedral 

technology). In particular, instead of solving program (6) , we can 

alternatively test for MPSS by evaluating the one-sided scale elas- 

ticities at DMU o . If T is a polyhedral technology, the latter ap- 

proach is computationally straightforward and requires solving two 

linear programs ( Podinovski et al., 2016 ). However, to solve pro- 

gram (6) we need to have an operational definition of the reference 

technology T ∗. Defining T ∗ may not be a straightforward task and 

may require additional research. Thus, such situation arises in the 

numerical example discussed in the next section. 21 

20 See Podinovski (2004a , p. 245) for a discussion of this interpretation. 
21 Another example is the reference cone technology for the HRS technology 

( Podinovski, 2004c ), which is developed in Podinovski (2009) . Both technologies 

Furthermore, as noted in Section 6 , the testing of types of GRS 

requires assessing the output radial efficiency of DMU o in the ref- 

erence NIRS and NDRS technologies generated by T , and such 

technologies may not be immediately available either. However, 

as established by Theorem 1 , we can equivalently test for local 

RTS types. As noted, if T is a polyhedral technology, this task is 

straightforward. 

8. Numerical example 

Theorem 1 establishes the equivalence of local and global RTS 

characterizations in any closed convex technology T . In this section 

we illustrate this result by an example involving a VRS technology 

expanded by additional weight restrictions. DEA models based on 

such technologies are well established in the literature (see, e.g., 

Allen, Athanassopoulos, Dyson, and Thanassoulis, 1997; Dyson and 

Thanassoulis, 1988; Podinovski, 20 04d; 20 05; 2016; Thanassoulis, 

Portela, and Allen 2004 ). 

8.1. Theoretical background 

Let observed DMUs be ( X j , Y j ), j = 1 , . . . , n, where X j ∈ R m 
+ and 

Y j ∈ R s + are the vectors of inputs and outputs respectively. To be 

specific, consider assessing the output radial efficiency of DMU o 

by the multiplier VRS model. This model is stated in terms of 

variable vectors of input and output weights v ∈ R m 
+ and u ∈ R s + , 

respectively. 

Weight restrictions are additional constraints on the input and 

output weights incorporated in the multiplier model. Suppose we 

have K homogeneous weight restrictions stated in the following 

form: 

v 
⊤ P t − u ⊤ Q t ≥ 0 , t = 1 , . . . , K. (7) 

The output radial efficiency of DMU o is the inverse of the opti- 

mal value η∗ of the following program: 

η∗ = min v ⊤ X o + ω 

subject to u ⊤ Y o = 1 , 
v ⊤ X j − u ⊤ Y j + ω ≥ 0 , j = 1 , . . . , n, 

v ⊤ P t − u ⊤ Q t ≥ 0 , t = 1 , . . . , K, 

u, v ≥ 0 , ω sign free . 

(8) 

The dual to program (8) is the output-oriented envelopment 

model which can be stated as follows: 

η∗ = max η

subject to 
n 

∑ 

j=1 

λ j X j + 

K 
∑ 

t=1 

πt P t ≤ X o , 

n 
∑ 

j=1 

λ j Y j + 

K 
∑ 

t=1 

πt Q t ≥ ηY o , 

n 
∑ 

j=1 

λ j = 1 , 

λ, π ≥ 0 , η sign free , 

(9) 

where vector π ∈ R K + is dual to the weight restrictions in (8) . 

Observe that the envelopment model (9) includes the dual 

terms generated by weight restrictions in the multiplier model (8) : 

(P t , Q t ) , t = 1 , . . . , K. (10) 

These terms, used in variable proportions π t ≥ 0, modify the 

DMUs in the standard VRS model represented by the first terms 

of constraints of program (9) . Following Podinovski (2004d) , the 

are subsequently used in the decomposition of the Malmquist index of productivity 

change in analysis of school efficiency reported in Podinovski et al. (2014) . 
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Table 1 

The data set in example. 

Input 1 Input 2 Input 3 Output 1 Output 2 

DMU 1 2 2 3 2 1 

DMU 2 4 4 3 4 3 

DMU 3 6 4 5 3 2 

DMU 4 2 3 3 3 4 

DMU 5 6 5 4 4 5 

terms (10) are interpretable as production trade-offs between inputs 

and outputs. This implies that the envelopment program (9) as- 

sesses the output radial efficiency of DMU o in the VRS technol- 

ogy expanded by production trade-offs (10) . More precisely, this 

expanded technology is defined as follows: 

Definition 4 ( Podinovski, 2004d ) . The VRS technology with pro- 

duction trade-offs T VRS −TO is the set of all nonnegative DMUs 

(X, Y ) ∈ R m 
+ × R s + for which there exist intensity vectors λ ∈ R n + , 

π ∈ R K + , and slack vectors d ∈ R m 
+ and e ∈ R s + such that 

n 
∑ 

j=1 

λ j X j + 

K 
∑ 

t=1 

πt P t + d = X, (11a) 

n 
∑ 

j=1 

λ j Y j + 

K 
∑ 

t=1 

πt Q t − e = Y, (11b) 

n 
∑ 

j=1 

λ j = 1 . (11c) 

Technology T VRS −TO is a polyhedral set and is, therefore, a con- 

vex technology (Podinovski, 2015). 

Remark 5. It is well known that the incorporation of weight re- 

strictions (7) in the multiplier model (8) may result in its infea- 

sibility or, equivalently, in an unbounded solution to its dual en- 

velopment model (9) . Podinovski and Bouzdine-Chameeva (2013) , 

Podinovski and Bouzdine-Chameeva (2015) refer to such weight 

restrictions as inconsistent (with the data set). They show that 

inconsistent weight restrictions generate either unlimited or free 

production of output vectors in technology T VRS −TO . 
22 Moreover, 

it is possible that weight restrictions are inconsistent, even if 

for all observed DMUs, the corresponding multiplier model (8) is 

feasible, and the calculated efficiency scores appear unproblem- 

atic. Podinovski and Bouzdine-Chameeva (2013) , Podinovski and 

Bouzdine-Chameeva (2015) develop simple necessary and suffi- 

cient conditions, and also computational approaches, for verifying 

the consistency of weight restrictions (7) . 

Below we assume that the weight restrictions (7) are consis- 

tent. Under this assumption, both the multiplier and envelopment 

models (8) and (9) have a finite optimal solution η∗, for any DMU o 

in technology T VRS −TO , provided Y o � = 0. 

8.2. The data set and output radial efficiency 

The data set in Table 1 shows 5 DMUs assessed on 3 inputs and 

2 outputs. Let v 1 , v 2 and v 3 be the input weights, and u 1 and u 2 
be the output weights. Consider assessing the output radial effi- 

ciency of the five DMUs using the VRS model with the following 

22 See footnotes 3 and 14 for the definitions of unlimited and free production. 

Table 2 

One-sided scale elasticities ε + and ε −, and local RTS types of output 

radial efficient DMUs. 

ω min ω max ε − ε + Type of RTS 

DMU 1 −∞ −5 + ∞ 6 IRS 

DMU 2 −∞ 0.3333 + ∞ 0.6667 CRS 

DMU 4 −∞ 0.2118 + ∞ 0.7882 CRS 

DMU 5 0.1111 0.2727 0.8889 0.7273 DRS 

additional weight restrictions, which is a special case of (7) : 23 

v 1 − v 2 ≥ 0 , 
−v 1 + 2 v 2 ≥ 0 , 
−2 u 1 + 3 u 2 ≥ 0 , 
v 3 − 2 u 2 ≥ 0 . 

(12) 

The output radial efficiency of each DMU can be assessed by 

solving either the multiplier model (8) or its dual envelopment 

model (9) . Computations show that four out of the five DMUs (all 

except DMU 3) are output radial efficient. All four such DMUs al- 

low both the local and global RTS characterizations. 

The output radial efficiency of DMU 3 is equal to 0.5. Therefore 

DMU 3 does not satisfy Assumption 1 , and the notions of local and 

global RTS are undefined at this DMU. 

8.3. Local RTS 

As noted in Remark 2 , the left-hand and right-hand scale elas- 

ticities ε − and ε + evaluated at any output radial efficient DMU o 

can be calculated by formulae (4) . 24 For this we need to calculate 

the two extreme optimal values ω min and ω max of the sign free 

variable ω in the multiplier model. This task is straightforward and 

requires solving two linear programs for each DMU o , as shown in 

Appendix B . 

Table 2 shows the values ω min and ω max , and the correspond- 

ing one-sided scale elasticities evaluated at the four output radial 

efficient DMUs. By Definition 2 , DMU 1 exhibits IRS, DMUs 2 and 4 

exhibit CRS, and DMU 5 exhibits DRS. 25 

The obtained RTS characterization is by definition local, i.e., the 

RTS types are indicative of the proportion in which the output vec- 

tor Y o of DMU o would respond to marginal proportional changes 

of the input vector X o , provided the resulting DMU remains output 

radial efficient. For example, DMU 5 exhibits DRS, and the right- 

hand scale elasticity evaluated at this DMU is equal to 0.7273. This 

implies that, if we increase its input vector in a marginally small 

proportion, e.g., by 1%, its output vector would increase more grad- 

ually, by 0.7273%. If we reduce the input vector of this DMU by 1%, 

the output vector would decrease by 0.8889%. 

8.4. Global RTS 

The question we are now concerned with is the following: are 

the types of local RTS discussed above (and shown in Table 2 ) 

indicative of the direction to MPSS for the four output-efficient 

DMUs, i.e., is the global characterization of RTS the same as the 

local one? 

23 It is straightforward to verify that weight restrictions (12) are consistent. In- 

deed, the inequalities (12) are satisfied by the strictly positive weights v 1 = v 2 = 1 , 

v 3 = 2 and u 1 = u 2 = 1 . By Corollary 1 to Theorem 4 in Podinovski and Bouzdine- 

Chameeva (2015) , the weight restrictions (12) are consistent. 
24 The validity of formula (4) for technology T VRS −TO follows from the general for- 

mula (20) proved in Podinovski et al. (2016) . 
25 As established by Theorem 1 in Podinovski et al. (2016) , the case ε − = + ∞ (ob- 

served for DMUs 1, 2 and 4) corresponds to the situation in which the input vector 

of DMU o cannot be proportionally reduced, while keeping the resulting DMU in the 

technology. 
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In the standard VRS model without additional weight restric- 

tions, this question is positively answered by Proposition 1 in 

Banker (1984) . For example, in the standard VRS technology (with- 

out weight restrictions), the IRS type indicates that the DMU 

should increase its scale of operations in order to reach its MPSS. 

If a DMU exhibits CRS, it is already at MPSS. On the other hand, 

this simple correspondence between the local and global charac- 

terizations generally breaks down if the technology is not convex 

( Podinovski, 2004a ). 

Theorem 1 gives a positive answer to the stated question. As 

noted, the VRS technology with weight restrictions is a convex 

technology. According to Theorem 1 , the local RTS characterization 

of the output-efficient DMUs shown in Table 2 coincides with their 

global characterization. In particular, because DMU 1 exhibits local 

IRS, it also exhibits G-IRS and should increase the scale of its oper- 

ations to achieve its MPSS. DMU 5 exhibits local DRS and therefore 

exhibits G-DRS, and should be scaled down to achieve its MPSS. 

DMUs 2 and 4 exhibit CRS and are therefore at their respective 

MPSS. 

8.5. Direct evaluation of GRS 

Taking into account Theorem 1 , we could stop our investiga- 

tion now because both the local and global characterizations of 

RTS have been obtained. However, for illustrative purposes, below 

we show how the global RTS types can be evaluated directly. This 

assessment (and the identification of DMUs at MPSS) requires ad- 

ditional computations utilizing the idea of the reference technology 

method ( Färe et al., 1983; 1985 ). A variant of this method adjusted 

for testing for GRS types in an arbitrary technology was developed 

in Podinovski (2004a) . This method relies on the evaluation of out- 

put radial efficiency of DMU o in the NIRS and NDRS technologies 

generated by the underlying true technology, in our example tech- 

nology T VRS −TO . 

To the best of the author’s knowledge, the DEA literature does 

not describe the required NIRS and NDRS technologies gener- 

ated by technology T VRS −TO . Following the general definition of 

Podinovski (2004a) , let C, H and G be the CRS (cone), NIRS 

and NDRS technologies generated by technology T VRS −TO . More 

precisely, 

C = { (X, Y ) ∈ R 
m + s | ∃ ( ̃  X , ̃  Y ) ∈ T VRS −TO , δ ≥ 0 : (X, Y ) 

= δ( ̃  X , ̃  Y ) } , 

H = { (X, Y ) ∈ R 
m + s | ∃ ( ̃  X , ̃  Y ) ∈ T VRS −TO , δ ∈ [0 , 1] : (X, Y ) 

= δ( ̃  X , ̃  Y ) } , 

G = { (X, Y ) ∈ R 
m + s | ∃ ( ̃  X , ̃  Y ) ∈ T VRS −TO , δ ≥ 1 : (X, Y ) 

= δ( ̃  X , ̃  Y ) } . (13) 

In Appendix C we present examples that show that, generally, 

technologies C and H may not be closed sets. 26 Let C̄ and H̄ be the 

closures of technologies C and H, respectively. Denoting cl(.) the 

closure operator, we have the following result. 

Theorem 2. 

(i) Technology C̄ = cl (C) is described by conditions (11) from 

which the equality (11c) is removed. 27 

(ii) Technology H̄ = cl (H) is described by conditions (11) in which 

equality (11c) is changed to the “≤ ” inequality. 

26 If the VRS technology of Banker et al. (1984) is used without weight restrictions, 

its reference technologies C, H and G are the standard CRS ( Charnes et al., 1978 ), 

NIRS ( Färe & Grosskopf, 1985 ) and NDRS ( Seiford & Thrall, 1990 ) technologies. All 

these technologies are closed sets, and the particular problem with nonclosed ref- 

erence technologies arising in the case of weight restrictions does not occur. 
27 This means that C̄ = cl (C) is the standard CRS technology of Charnes et al. 

(1978) expanded by the weight restrictions (7) . 

Table 3 

Output radial efficiency of DMUs in different technologies, all in- 

corporating weight restrictions (12) , and their GRS characteriza- 

tion. Note that DMU 3 is output radial inefficient, and its GRS type 

is undefined. 

VRS CRS NIRS NDRS Type of GRS 

DMU 1 1 0.5 0.5 1 G-IRS 

DMU 2 1 1 1 1 G-CRS (MPSS) 

DMU 3 0.5 0.45 0.5 0.45 Undefined 

DMU 4 1 1 1 1 G-CRS (MPSS) 

DMU 5 1 0.9643 1 0.9643 G-DRS 

(iii) Technology G is closed and described by conditions (11) in 

which equality (11c) is changed to the “≥ ” inequality. 

Proposition 2. The output radial efficiency of any DMU o ∈ T VRS −TO 

evaluated in the reference technology C or H is equal to its output 

radial efficiency in the corresponding closed technology C̄ or H̄ , re- 

spectively. 

The above statement implies that in practice we can assess the 

efficiency of all DMUs in the closed technologies that have a simple 

operational form stated by Theorem 2 . 28 

Table 3 shows the output radial efficiency of all five DMUs in 

the VRS technology T VRS −TO and its reference CRS, NIRS and NDRS 

technologies. 29 Appendix B shows an example of linear program 

used for the calculations. 

Denote E VRS , E NIRS and E NDRS the output radial efficiency of 

DMU o in technologies T VRS −TO , H and G. 30 By Theorem 3 in 

Podinovski (2004a) , where we omit the fourth case of G-SCRS as 

impossible in a convex technology, DMU o exhibits 

(i) G-CRS if and only if E NDRS = E NIRS = E VRS ; 

(ii) G-IRS if and only if E NIRS < E NDRS ≤ E VRS ; 

(iii) G-DRS if and only if E NDRS < E NIRS ≤ E VRS . 

For example, as shown in Table 3 , for DMU 1 we have: E VRS = 1 , 

E NIRS = 0 . 5 and E NDRS = 1 . Therefore, DMU 1 exhibits G-IRS. The 

last column of Table 3 shows the GRS types of all four output ra- 

dial efficient DMUs. As formally established by Theorem 1 , this is 

of course consistent with the local RTS characterization shown in 

Table 2 . 

In summary, as demonstrated, we can evaluate the local 

and global RTS types independently. However, as follows from 

Theorem 1 , in a convex technology, the two characterizations are 

identical, and it suffices to obtain only one of them. An additional 

consideration here is that the local RTS characterization in any 

polyhedral technology can be obtained by the unifying approach 

developed in Podinovski et al. (2016) , used in the above example. 

In contrast, as also shown by the above example, testing for global 

types of RTS requires operational statements of the NIRS and NDRS 

technologies, which may not be readily available. 

9. Further example: a two-stage network DEA model 

There is large literature on various types of network DEA mod- 

els (see, e.g., Kao, 2014 ). Consider the simple two-stage production 

process in which each DMU is described by the triplet ( X , Z , Y ), 

28 Note that Proposition 2 is not a trivial statement. Thus, generally, the output 

radial efficiency of a DMU o in an arbitrary technology T may be strictly smaller 

than in technology T̄ = cl (T ) , even if T̄ is a polyhedral technology. An example of 

this is considered in Appendix C . 
29 The CRS technology is not required for the method of Podinovski (2004a) but 

is used by the method of Färe et al. (1983) ; 1985 ). We include technology C in 

Table 3 for completeness and reference purposes. 
30 Because DMUs 1, 2, 3 and 4 are output radial efficient, we always have E VRS = 1 

for each of them. 
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where X ∈ R m 
+ , Z ∈ R 

p 
+ and Y ∈ R s + are the vectors of inputs, inter- 

mediate outputs produced by the first production stage and acting 

as the inputs to the second production stage, and the vector of fi- 

nal outputs, respectively. 

Each observed DMU j = 1 , . . . , n is stated as ( X j , Z j , Y j ). Denote 

X̄ the n × m matrix whose columns are vectors X j , j = 1 , . . . , n . 

Similarly, let matrices Z̄ and Ȳ consist of the vector-columns Z j and 

Y j , j = 1 , . . . , n, respectively. 

Suppose we are interested in the maximum production of the 

final outputs described by vector Y from any given vector of in- 

puts X . Taking into account the network structure of the produc- 

tion process, and assuming that both stages exhibit VRS, we de- 

fine the technology T N in the input and final output dimensions 

as follows. This definition is consistent with the definition used by 

Sahoo et al. (2014) . 

Definition 5. The network technology T N with two VRS stages is 

the set of all nonnegative DMUs (X, Y ) ∈ R m 
+ × R s + for which there 

exist intensity vectors λ, μ ∈ R n + , intermediate outputs Z ∈ R 
p 
+ , and 

slack vectors d ∈ R m 
+ , e ∈ R s + , f, g ∈ R 

p 
+ such that 

X̄ λ + d = X, (14a) 

Ȳ μ − e = Y, (14b) 

Z̄ λ − Z − f = 0 , (14c) 

Z̄ μ − Z + g = 0 , (14d) 

1 ⊤ λ = 1 , (14e) 

1 ⊤ μ = 1 . (14f) 

The above conditions (14) are a special case of conditions (1) of 

Podinovski et al. (2016) defining a general polyhedral technology 

that satisfies free disposability of inputs and outputs. In particu- 

lar, the latter general formulation utilizes vector U o important for 

the calculation of one-sided elasticities and RTS characterization. 

In our case vector U o is the vector of constants on the right-hand 

side of equalities (14c) –(14f) , i.e., 

U o = (0 , 0 , 1 , 1) ⊤ . (15) 

Note that the first two zero components of the vector U o are 

vectors, and the last two ones are scalars. 31 

Because T N is a polyhedral technology, the calculation of the 

one-sided scale elasticities and many other marginal characteris- 

tics on its frontier can be performed by solving linear programs 

developed in Podinovski et al. (2016) . In particular, let DMU ( X o , Y o ) 

be output radial efficient in technology T N , i.e., satisfy the above 

Assumption 1 . 

Note that evaluating the output radial efficiency of DMU o re- 

quires replacing vectors X and Y on the right-hand side of equa- 

tions (14a) and (14b) by vectors X o and ηY o , respectively, where 

η is a sign-free scalar, and maximizing η over the resulting con- 

straints. 32 Let μ, ν and ω be the dual vectors corresponding 

to the constraints of this output-oriented linear program. More 

precisely, vectors μ and ν correspond to the constraints based 

on (14a) and (14b) , and ω includes the dual variables to the con- 

straints (14c) –(14f) . 

31 As required by formula (1) in Podinovski et al. (2016) , we define the vec- 

tor ˆ λ = (λ, μ, Z, f, g) . Then equalities (14a) and (14b) are special cases of condi- 

tions (1.1) and (1.2) of Podinovski et al. (2016) . Equalities (14c) –(14f) are a special 

case of condition (1.3). 
32 In the case of input orientation, a similar program is considered in Sahoo et al. 

(2014) . 

As shown by Podinovski et al. (2016) , the one-sided scale elas- 

ticities at DMU o in any polyhedral technology can be calculated as 

follows: 

ε + (X o , Y o ) = 1 − max 〈 μ,ν,ω〉∈ { U ⊤ o ω} , 
ε −(X o , Y o ) = 1 − min 〈 μ,ν,ω〉∈ { U ⊤ o ω} , 

(16) 

where  is the set of optimal solutions to the dual (multiplier) 

output-oriented program. 

Taking into account (15) , we can restate the general for- 

mula (16) by the following equivalent statement: 

ε + (X o , Y o ) = 1 − max 〈 μ,ν,ω〉∈ { ω 1 + ω 2 } , 
ε −(X o , Y o ) = 1 − min 〈 μ,ν,ω〉∈ { ω 1 + ω 2 } , 

(17) 

where ω 1 and ω 2 are the dual variables (scalars) to equali- 

ties (14e) and (14f) , respectively. 

According to Definition 2 , the one-sided scale elastici- 

ties (17) lead to the straightforward RTS characterization of DMU o . 

By Theorem 1 , the local types of RTS stated by Definition 2 coin- 

cide with the corresponding GRS types. Furthermore, according to 

Corollary 1 , a DMU o in the network technology T N is at MPSS if 

and only if it exhibits CRS. 

It is worth emphasizing that obtaining these global character- 

izations of DMU o would normally require constructing the NIRS 

and/or NDRS reference technologies for the network technology T N 

which, to the best of the author’s knowledge, are not readily avail- 

able. However, as shown, the GRS types and related notion of MPSS 

can equivalently be evaluated using the notion of one-sided scale 

elasticities. Their evaluation in technology T N requires solving two 

linear programs (17) , which is a straightforward task. 

Remark 6. The one-sided scale elasticities can also be obtained us- 

ing the set of optimal solutions � to the dual (multiplier) input- 

oriented program. Assuming DMU o is simultaneously input and 

output radial efficient, Podinovski et al. (2016 , footnote 14) show 

that such scale elasticities are calculated as follows: 

ε + (X o , Y o ) = 1 / 
(

1 − min 〈 μ,ν,ω〉∈ �{ U ⊤ o ω} 
)

, 

ε −(X o , Y o ) = 1 / 
(

1 − max 〈 μ,ν,ω〉∈ �{ U ⊤ o ω} 
)

. 
(18) 

For the network technology T N , formulae (18) take on the 

form: 

ε + (X o , Y o ) = 1 / 
(

1 − min 〈 μ,ν,ω〉∈ �{ ω 1 + ω 2 } 
)

, 

ε −(X o , Y o ) = 1 / 
(

1 − max 〈 μ,ν,ω〉∈ �{ ω 1 + ω 2 } 
)

, 

where ω 1 and ω 2 are the dual variables to equali- 

ties (14e) and (14f) , in the input-oriented multiplier program. 

This last expression generalizes formula (8) given in Banker and 

Thrall (1992) for the single-stage VRS technology. 

10. Conclusion 

In recent years, an important research avenue in DEA theory 

has been the development of new models based on more specific 

assumptions about the production process than those incorporated 

in the standard VRS model. Many of these new approaches model 

the production technology as a convex set and, almost invariably, 

as a polyhedral set. Examples of such polyhedral technologies arise 

in models with weakly disposable undesirable outputs, in exten- 

sions to the VRS technology by weight restrictions or production 

trade-offs, models of production processes with several compo- 

nents and network DEA models. 

In a recent paper, Podinovski et al. (2016) developed a unifying 

linear programming methodology for the evaluation of one-sided 

scale elasticities and RTS characterization of DMUs in any polyhe- 

dral production technology. This development has led to a theoret- 

ical question, whether the local RTS characterization in an arbitrary 

polyhedral technology (conceptually defined by the scale elasticity 
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evaluated at a given point on the frontier) is consistent with the 

global scale characteristics (including the notion of MPSS) as it is 

in the case of conventional VRS technology. 

In this paper we address the above question in a more general 

class of closed convex technologies. We first establish that the one- 

sided scale elasticities of efficient frontiers in this class are “well- 

behaved”, and their properties are sufficiently similar to those ob- 

served in polyhedral technologies. This allows us to extend the 

standard local RTS characterization to generally nonsmooth pro- 

duction frontiers of closed convex technologies. Based on this de- 

velopment, we prove that the types of RTS for this very large class 

of frontiers are consistent with the standard notions of MPSS and 

direction to MPSS expressed by global types of returns to scale. 

The above development rigorously shows that closed convex 

technologies and, in particular, all polyhedral technologies are the- 

oretically similar to the conventional VRS model. This result has 

an important practical implication. The standard methods of test- 

ing MPSS and, more generally, global types of RTS rely on the 

evaluation of output or input radial efficiency of DMU o in the 

reference constant, nonincreasing and nondecreasing RTS technolo- 

gies. In the conventional case of VRS, these technologies are well- 

known. However, for many other polyhedral technologies their ref- 

erence technologies may not be readily available. Our theoretical 

results show that, instead of developing such reference technolo- 

gies, we may alternatively evaluate the types of RTS using the 

existing linear programming methodologies suitable for any poly- 

hedral technology. Based on results of this paper, the task of trans- 

lating the types of local RTS into the MPSS and global RTS types 

becomes straightforward. 

Appendix A. Proofs 

Proof of Proposition 1. The proof of part (i) follows from the as- 

sumption that T is a closed convex set. To prove part (ii), first 

note that sup β(α) < + ∞ , for all α ∈ Ŵ. Indeed, assume the op- 

posite, i.e., that there exists an α∗ ∈ Ŵ such that sup β(α∗) = + ∞ . 

Then by Theorem 2 in Podinovski and Bouzdine-Chameeva (2013) , 

sup β(α) = + ∞ , for all α ∈ Ŵ, which contradicts Assumption 1 . 

Therefore, for every α ∈ Ŵ, sup β(α) is finite and, because T is 

closed, it is attained. Part (iii) is proved as Lemma 3 in Podinovski 

(2004a) . �

We now prove Corollary 1 as a lemma, before proving 

Theorem 1 . 

Lemma 1. DMU o is at MPSS if and only if it exhibits CRS. 

Proof of Lemma 1. Let DMU o exhibit CRS. We need to prove that 

DMU o is at MPSS, i.e., 

β̄(α) 

α
≤ 1 , ∀ α ∈ Ŵ, α > 0 . (A.1) 

Let α = 1 be an interior point of Ŵ. Then, as noted in Section 2 , 

the one-sided derivatives β̄ ′ 
−(1) and β̄ ′ 

+ (1) exist and are finite. For 

all α ∈ Ŵ we have 

β̄(α) ≤ 1 + β̄ ′ 
+ (1)(α − 1) , (A.2a) 

β̄(α) ≤ 1 + β̄ ′ 
−(1)(α − 1) . (A.2b) 

Consider any α ∈ Ŵ. If α > 1 then, because β̄ ′ 
+ (1) ≤ 1 , 

(A.2a) implies β̄(α) ≤ α. If 0 < α < 1 then, because β̄ ′ 
−(1) ≥ 1 , 

(A.2b) implies β̄(α) ≤ α. Both cases imply (A.1) . 

Now assume that α = 1 is the left extreme point of Ŵ. Then α
≥ 1 for all α ∈ Ŵ. As noted in Section 2 , β̄ ′ 

+ (1) > −∞ . Taking into 

account the definition of CRS, β̄ ′ 
+ (1) is finite and β̄ ′ 

+ (1) ≤ 1 . The 

inequality (A.1) now follows from (A.2a) as above. 

Let α = 1 be the right extreme point of Ŵ. We need to 

prove (A.1) for all α ∈ Ŵ, 0 < α < 1. As noted in Section 2 , 

β̄ ′ 
−(1) < + ∞ . Taking into account the definition of CRS, β̄ ′ 

−(1) is 

finite and β̄ ′ 
−(1) ≥ 1 . Then (A.1) follows from (A.2b) , as above. 

Conversely, assume that DMU o is at MPSS, i.e., (A.1) is true. We 

need to prove that β̄ ′ 
+ (1) ≤ 1 , if α = 1 is not the right extreme 

point of Ŵ, and β̄ ′ 
−(1) ≥ 1 , if α = 1 is not the left extreme point 

of Ŵ. Both proofs are similar, and we prove only the first part. By 

definition, we have 

β̄ ′ 
+ (1) = lim 

α↓ 1 

β̄(α) − β̄(1) 

α − 1 
. (A.3) 

Assume that β̄ ′ 
+ (1) > 1 . Then for all α > 1 sufficiently close to 

1 we have 

β̄(α) − β̄(1) 

α − 1 
> 1 . (A.4) 

By rearrangement and because β̄(1) = 1 , we have β̄(α) > α, 

which contradicts (A.1) . �

Proof of Theorem 1. The equivalence of G-CRS and CRS types is 

established by Lemma 1 . For further proof, consider the function of 

ray average productivity ϕ(α) = β̄(α) /α defined on Ŵ0 = Ŵ \ { 0 } . 
Denote ϕ ∗ the supremum of ϕ( α) on Ŵ0 . Note that ϕ ∗ may be 

finite or equal to + ∞ , and may be attained or unattained. De- 

note Ŵ∗ = { α ∈ Ŵ | ϕ(α) = ϕ ∗} . Ŵ∗ = ∅ if ϕ ∗ is not attained. By 

Lemma 5 in Podinovski (2004a) , if Ŵ∗ � = ∅ then Ŵ∗ is a closed in- 

terval. Therefore, we can represent Ŵ0 as the union of three inter- 

vals as follows: 

Ŵ0 = Ŵ+ ∪ Ŵ∗ ∪ Ŵ−, (A.5) 

where, for any α1 ∈ Ŵ+ , α2 ∈ Ŵ∗ and α3 ∈ Ŵ−, we have α1 < α2 < 

α3 . Any of the three intervals Ŵ
+ , Ŵ∗ and Ŵ−, but not all of them, 

may be empty sets, however, the case Ŵ∗ = ∅ , while Ŵ+ � = ∅ and 

Ŵ− � = ∅ , is impossible ( Podinovski, 2004a ). 

By Theorem 5 proved in Podinovski (2004a) , ϕ( α) is strictly in- 

creasing on Ŵ+ and strictly decreasing on Ŵ− (provided these in- 

tervals are not empty). This implies that DMU o exhibits G-IRS if 

1 ∈ Ŵ+ , G-CRS (and hence is at MPSS) if 1 ∈ Ŵ∗, and G-DRS if 

α = 1 ∈ Ŵ−. 

Let 1 ∈ Ŵ+ . Because Ŵ∗ is a closed interval, from (A.5) , α = 1 

is not the right extreme point of Ŵ+ . Because ϕ( α) is strictly in- 

creasing on Ŵ+ , for all α located in Ŵ+ to the right of α = 1 , we 

have β̄(α) /α > β̄(1) / 1 = 1 . This implies (A.4) . By (A.3) , β̄ ′ 
+ (1) ≥ 1 . 

If we assume that β̄ ′ 
+ (1) = 1 , then by Definition 2 , DMU o exhibits 

CRS and, by Lemma 1 , DMU o is at MPSS. Therefore 1 ∈ Ŵ∗, which 

contradicts the assumption. Therefore β̄ ′ 
+ > 1 and, by Definition 2 , 

DMU o exhibits IRS. 

If 1 ∈ Ŵ−, a similar proof establishes that DMU o exhibits 

DRS. �

Proof of Theorem 2. Consider statement (i). Denote C ∗ the set of 

DMUs ( X , Y ) described by conditions (11) from which the equal- 

ity (11c) is removed. We need to prove that C̄ = C ∗. We first note 

that C ∗ is a polyhedral set (Theorem 3 in Podinovski, 2015 ). There- 

fore, C ∗ is a closed set. 

Consider any DMU ( X , Y ) ∈ C . By (13) , (X, Y ) = δ( ̃  X , ̃  Y ) , where 

( ̃  X , ̃  Y ) ∈ T VRS −TO . The latter DMU satisfies (11) with some vectors 
˜ λ, ˜ π , ˜ e and ˜ d . Then DMU δ( ̃  X , ̃  Y ) satisfies (11a) and (11b) with 

the vectors δ˜ λ, δ ˜ π , δ ˜ e and δ ˜ d . Therefore, (X, Y ) ∈ C ∗, and C ⊆ C ∗. 

Because the set C ∗ is closed, we have C̄ = cl (C) ⊆ cl (C ∗) = C ∗. 

Conversely, let (X, Y ) ∈ C ∗. Then ( X , Y ) satis- 

fies (11a) and (11b) with some vectors λ′ , π ′ , e ′ and d ′ . De- 

note λ∗ = 1 ⊤ λ′ . The following two cases are possible. First, 

let λ∗ > 0. Define ( ̃  X , ̃  Y ) = (1 /λ∗)(X, Y ) . Then ( ̃  X , ̃  Y ) satis- 

fies (11) with λ = λ′ /λ∗, π = π ′ /λ∗, e = e ′ /λ∗ and d = d ′ /λ∗. 

Therefore, ( ̃  X , ̃  Y ) ∈ T VRS −TO . By (13) , (X, Y ) ∈ C ⊆ C̄ . 
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Now let λ∗ = 0 . Therefore, λ′ = 0 . Consider DMUs ( X k , Y k ), k = 

1 , 2 , . . . , defined as follows: 

(X k , Y k ) = 

n 
∑ 

j=1 

(

1 

n 
(X j , Y j ) 

)

+ k (X, Y ) . 

Each DMU ( X k , Y k ) is nonnegative and satisfies all condi- 

tions (11) with the vectors λk = (1 /n, . . . , 1 /n ) , πk = kπ ′ , e k = ke ′ 

and d k = kd ′ . Therefore, (X k , Y k ) ∈ T VRS −TO , for all k = 1 , 2 , . . . Con- 

sider the sequence of DMUs ( ̃  X k , ̃  Y k ) = (1 /k )(X k , Y k ) . By (13) , we 

have ( ̃  X k , ̃  Y k ) ∈ C, for all k = 1 , 2 , . . . Furthermore, 

lim 
k → + ∞ 

( ̃  X k , ̃  Y k ) = (X, Y ) . 

Therefore, (X, Y ) ∈ C̄ . Because DMU ( X , Y ) is an arbitrary element 

of C ∗, in both cases λ∗ > 0 and λ∗ = 0 we have C̄ ⊆ C̄ . Taking into 

account the first part of the proof, we have C ∗ = C̄ . 

The proof of the other two statements of the theorem is sim- 

ilar. It requires defining technologies H ∗ and G ∗ as the sets of all 

DMUs that satisfy conditions (11) in which the equality (11c) is re- 

placed by the “≤ ” and “≥ ” inequality, respectively. As in the case 

of technology C ∗, it is first established that the sets H ∗ and G ∗ are 

polyhedral and therefore closed. Repeating the steps of the above 

proof, it is straightforward to establish that H ∗ = H̄ . Because for 

technology G the case λ′ = 0 is impossible, we have G ∗ = G, which 

implies that G is a closed set. �

Proof of Proposition 2. Define η∗ = sup { η | (X o , ηY o ) ∈ C} and 

η̄∗ = sup { η | (X o , ηY o ) ∈ C̄ } . Because C ⊆ C̄ , we have η∗ ≤ η̄∗. 

Conversely, note that the weight restrictions (7) are assumed 

to be consistent in the VRS technology T VRS −TO . By Theorem 5 in 

Podinovski and Bouzdine-Chameeva (2013) , they are also consis- 

tent in technology C̄ which, as noted in 27 , is the CRS technology 

with weight restrictions (7) . Therefore, the supremum η̄∗ < + ∞ . 

Because technology C̄ is closed, η̄∗ is attained. We also obviously 

have η̄∗ ≥ 1 and (X o , η̄∗Y o ) ∈ C̄ . 

Let DMU (X o , Y o ) ∈ T VRS −TO satisfy (11) with some vectors 
˜ λ, ˜ π , ˜ e and ˜ d . Similarly, let DMU (X o , η̄∗Y o ) ∈ C̄ satisfy condi- 

tions (11a) and (11b) with some vectors λ′ , π ′ , e ′ and d ′ . Let 

λ∗ = 1 ⊤ λ′ . Two cases arise. 

First, let λ∗ > 0. In this case, it is straightforward to prove that 

(X o , η̄∗Y o ) ∈ C. Indeed, define ( ̃  X , ̃  Y ) = (1 /λ∗)(X o , η̄∗Y o ) . Then ( ̃  X , ̃  Y ) 

satisfies (11) with λ = λ′ /λ∗, π = π ′ /λ∗, e = e ′ /λ∗ and d = d ′ /λ∗. 

Therefore, ( ̃  X , ̃  Y ) ∈ T VRS −TO . Because (X o , η̄
∗Y o ) = λ∗( ̃  X , ̃  Y ) , by (13) , 

(X o , η̄∗Y o ) ∈ C. Therefore, if λ∗ > 0, we have η∗ ≥ η̄∗. 

Now let λ∗ = 0 . For all k = 1 , 2 , . . . define 

(

˜ X k , ̃  Y k 
)

= 
1 

k 
(X o , Y o ) + 

(

1 −
1 

k 

)

(X o , η̄
∗Y o ) . (A.6) 

Each DMU ( ̃  X k , ̃  Y k ) is nonnegative and satis- 

fies (11a) and (11b) with the vectors λk = (1 /k ) ̃ λ, πk = 

(1 /k ) ̃  π + (1 − 1 /k ) π ′ , e k = (1 /k ) ̃ e + (1 − 1 /k ) e ′ and d k = 

(1 /k ) ̃  d + (1 − 1 /k ) d ′ . Therefore, ( ̃  X k , ̃  Y k ) ∈ C, for all k = 1 , 2 , . . . 

Rearranging (A.6) , we have 
(

˜ X k , ̃  Y k 
)

= ( X o , ηk Y o ) ∈ C, 

where ηk = 1 /k + (1 − 1 /k ) ̄η∗ ≤ η̄∗. Because lim k → + ∞ ηk = η̄∗, and 

by definition of η∗, we have η∗ ≥ η̄∗. Combining all parts of the 

above proof, we have η∗ = η̄∗. 

The proof for technologies H and H̄ is similar. In particular, be- 

cause H̄ ⊆ C̄ , we have ˆ η∗ = sup { η | (X o , ηY o ) ∈ H̄ } ≤ η̄∗. As proved, 

η̄∗ < + ∞ . Therefore, ˆ η∗ < + ∞ . The rest of the proof is similar to 

the proof for technology C̄ and is omitted. �

Appendix B. Models for the numerical example 

Below we present linear programs used in the assessment of 

local and global RTS in the example discussed in Section 8 . To be 

specific, consider DMU 1. 

To calculate the one-sided scale elasticities at DMU 1, we first 

evaluate the extreme values of variable ω in the set of optimal so- 

lutions to the corresponding program (8) . For example, the value 

ω max is obtained by solving the following linear program: 33 

ω max = max ω 

subject to 2 v 1 + 2 v 2 + 3 v 3 + ω = 1 , 
2 u 1 + 1 u 2 = 1 , 
2 v 1 + 2 v 2 + 3 v 3 − 2 u 1 − 1 u 2 + ω ≥ 0 , 
4 v 1 + 4 v 2 + 3 v 3 − 4 u 1 − 3 u 2 + ω ≥ 0 , 
6 v 1 + 4 v 2 + 5 v 3 − 3 u 1 − 2 u 2 + ω ≥ 0 , 
2 v 1 + 3 v 2 + 3 v 3 − 3 u 1 − 4 u 2 + ω ≥ 0 , 
6 v 1 + 5 v 2 + 4 v 3 − 4 u 1 − 5 u 2 + ω ≥ 0 , 
v 1 − v 2 ≥ 0 , 
−v 1 + 2 v 2 ≥ 0 , 
−2 u 1 + 3 u 2 ≥ 0 , 
v 3 − 2 u 2 ≥ 0 , 
u 1 , u 2 , v 1 , v 2 , v 3 ≥ 0 , ω sign free . 

The value ω min is obtained by changing the maximization of ω 

in the above program to its minimization. We convert the obtained 

values ω max and ω min to the one-sided scale elasticities using for- 

mula (4) . 

For the GRS characterization, we first assess the output radial 

efficiency of each DMU o in the reference NIRS and NDRS technolo- 

gies for technology T VRS −TO . As described in Section 8 , the GRS type 

of each DMU o is obtained by comparing these efficiencies with its 

efficiency in technology T VRS −TO . 

For example, the output radial efficiency of DMU 1 in the ref- 

erence NIRS technology H (more precisely, in its closure H̄ : see 

Section 8 for a discussion) is the inverse to the optimal value η∗ of 

the following program: 

η∗ = max η
subject to 

2 λ1 + 4 λ2 + 6 λ3 + 2 λ4 + 6 λ5 + 1 π1 − 1 π2 ≤ 2 , 
2 λ1 + 4 λ2 + 4 λ3 + 3 λ4 + 5 λ5 − 1 π1 + 2 π2 ≤ 2 , 
3 λ1 + 3 λ2 + 5 λ3 + 3 λ4 + 4 λ5 + 1 π4 ≤ 3 , 
2 λ1 + 4 λ2 + 3 λ3 + 3 λ4 + 4 λ5 + 2 π3 ≥ 2 η, 

1 λ1 + 3 λ2 + 2 λ3 + 4 λ4 + 5 λ5 − 3 π3 + 2 π4 ≥ 1 η, 

1 λ1 + 1 λ2 + 1 λ3 + 1 λ4 + 1 λ5 ≤ 1 , 
λ1 , λ2 , λ3 , λ4 , λ5 , π1 , π2 , π3 , π4 ≥ 0 . 

For the output radial efficiency in the reference NDRS technol- 

ogy G, we change the sign of the second last inequality in the 

above program to “≥ ”. 

Appendix C. Examples 

Below we give an example of a VRS technology with weight re- 

strictions T VRS −TO whose CRS (cone) and NIRS reference technolo- 

gies C and H are not closed sets. We also give an example that 

illustrates footnote 28 . These examples underline the importance of 

Theorem 2 and Proposition 2 for the assessment of output radial 

efficiency in these reference technologies. 

Fig. C.3 shows the single observed DMU A whose input X is 

equal to 2, and output Y is equal to 1. Assume that we have speci- 

fied the weight restriction 

v 1 − 2 u 1 ≥ 0 . (C.1) 

By Definition 4, the VRS technology T VRS −TO induced by DMU A 

and weight restriction (C.1) is the set of nonnegative DMUs ( X , Y ) 

33 This program maximizes ω subject to the same constraints as in pro- 

gram (8) and the additional first constraint that keeps the objective function of 

program (8) equal to 1. 
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Fig. C3. Technology T VRS −TO (shown in dark grey) for which its reference CRS and 

NIRS technologies (expanded by the light grey area) are the same and are not closed 

sets. 

such that, restating (11) , we trivially have: 

2 λ1 + 1 π1 + d 1 = X, 

1 λ1 + 2 π1 − e 1 = Y, 

1 λ1 = 1 , 
λ1 , π1 , d 1 , e 1 ≥ 0 . 

(C.2) 

Technology T VRS −TO is shown in Fig. C.3 as the dark grey area 

below the ray AD . For example, DMU D is obtained from (C.2) by 

taking λ1 = 1 , π1 = 1 . 5 , and d 1 = e 1 = 0 . 

The reference CRS technology. According to (13) , the reference 

CRS (cone) technology C is obtained from technology T VRS −TO by 

scaling its units by arbitrary multipliers δ ≥ 0. Therefore, tech- 

nology C includes all rays starting from the origin O and passing 

through an arbitrary point in T VRS −TO . For example, C includes the 

rays OA and OD . From Fig. C.3 it is clear that technology C is the 

set under the ray OF (shown in both light and dark grey shading). 

Note that technology C does not include the ray OF and is not a 

closed set. 

The closure of technology C, denoted C̄ , is the closed cone that 

includes the ray OF and the shaded area below it. This technology 

is described by conditions (C.2) from which the equality 1 λ1 = 1 

is removed. For example, DMU B satisfies the resulting conditions 

with λ1 = 0 , π1 = 1 , and d 1 = e 1 = 0 . This illustrates statement (i) 

of Theorem 2 . 

Note that technology C̄ is (but technology C is not) the con- 

ventional CRS technology expanded by the incorporation of weight 

restrictions (C.1) . 34 

The reference NIRS technology. According to definition (13) , the 

reference NIRS technology H is obtained by scaling DMUs in tech- 

nology T VRS −TO by multipliers δ ∈ [0, 1]. It is clear that, for the 

technology in Fig. C.3 , its reference NIRS technology H coincides 

with the reference CRS technology C discussed above. Therefore, 

technology H is the shaded area below the ray OF , which excludes 

this ray and is not therefore a closed set. Its closure is technology 

H̄ which includes the ray OF and the shaded area below it. 

34 A standard definition of the CRS technology with weight restrictions is given by 

Podinovski (2004d) . It is obtained from Definition 4 by removing condition (11c) . 

Fig. C4. Example of technology T in which the output radial efficiency of DMU A 

is strictly smaller than in technology T̄ = cl (T ) . 

As proved by statement (ii) of Theorem 2 , the closed technology 

H̄ is described by conditions (C.2) in which the normalizing equal- 

ity for λ1 is replaced by the inequality 1 λ1 ≤ 1. As in the case of 

CRS technology, DMU B and any other DMU on or below the ray OF 

satisfies the resulting conditions with appropriately selected vari- 

ables λ1 , π1 , d 1 and e 1 . 

Technology H̄ (but not the technology H) can be regarded as 

the conventional NIRS technology (Färe and Grosskopf, 1985) ex- 

panded by weight restrictions (C.1) . 

The reference NDRS technology. Using definition (13) , the refer- 

ence NDRS technology G is obtained by scaling all DMUS in tech- 

nology T VRS −TO by multipliers δ ≥ 1. In our case, technology G

clearly coincides with technology T VRS −TO . For example, moving 

from DMU A along the ray OA and away from the origin (which 

corresponds to scaling DMU A with δ ≥ 1) generates DMUs that 

are already in technology T VRS −TO . 

According to statement (iii) of Theorem 2 , technology G is de- 

scribed by conditions (C.2) in which the normalizing equality for 

λ1 is replaced by the inequality 1 λ1 ≥ 1. It is clear that, in this 

particular example, the resulting relaxed set of conditions does not 

generate any new hypothetical (unobserved) DMUs compared to 

technology T VRS −TO . 

As proved by Theorem 2 and illustrated by this example, tech- 

nology G is a closed set. The reference NDRS technology G can be 

regarded as the conventional NDRS technology ( Seiford & Thrall, 

1990 ) expanded by weight restrictions (C.1) . 

Example illustrating Proposition 2 

Consider technology T shown as the shaded area in Fig. C.4 . 

Note that T includes the segment AC but excludes all points strictly 

between A and B , and also excludes B . The closure T̄ = cl (T ) in- 

cludes the entire segment BC . 

The output radial efficiency of DMU A = (1 , 1) in technology T 

is the inverse of the supremum 

η∗ = sup { η | (1 , η) ∈ T } = 1 . 

Therefore, the output radial efficiency of DMU A in T is equal 

to 1. This is strictly larger than the output radial efficiency of A in 

technology T̄ , which is equal to 0.5. 
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