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Abstract

Cloud service providers are under constant pressure to improve performance, offer more diverse resource

deployment options, and enhance application portability. To achieve these performance and cost objectives,

providers need a comprehensive resource allocation system that handles both computational and network resources.

A novel methodology is introduced to tackle the problem of allocating sufficient data center resources to client Virtual

Machine (VM) reservation requests and connection scheduling requests. This needs to be done while achieving the

providers’ objectives and minimizing the need for VM migration. In this work, the problem of resource allocation in

cloud computing data centers is formulated as an optimization problem and solved. Moreover, a set of heuristic

solutions are introduced and used as VM reservation and connection scheduling policies. A relaxed suboptimal

solution based on decomposing the original problem is also presented. The experimentation results for a diverse set

of network loads show that the relaxed solution has achieved promising levels for connection request average

tardiness. The proposed solution is able to reach better performance levels than heuristic solutions without the

burden of long hours of running time. This makes it a feasible candidate for solving problems with a much higher

number of requests and wider data ranges compared to the optimal solution.

Keywords: Clouds, Resource allocation, Analytical models, Systems simulation, Communication system traffic,

Communication system operations and management, Web and internet services, Virtual machines, Systems

solution design

Introduction
The appeal of cloud computing for clients comes from the

promise of transforming computing infrastructure into a

commodity or a service that organizations pay for exactly

as much as they use. This idea is an IT corporation exec-

utive’s dream. As Gartner analyst Daryl Plummer puts

it: “Line-of-business leaders everywhere are bypassing IT

departments to get applications from the cloud .. and pay-

ing for them like they would a magazine subscription. And

when the service is no longer required, they can cancel that

subscription with no equipment left unused in the corner”

[1]. The idea that centralized computing over the network

is the future, was clear to industry leaders as early as 1997.

None other than Steve Jobs said:“I don’t need a hard disk
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in my computer if I can get to the server faster .. carry-

ing around these non-connected computers is byzantine

by comparison” [1]. This applies as well to organizations

purchasing and planning large data centers.

However, performance remains the critical factor. If -

at any point- doubts are cast over a provider’s ability to

deliver the service according to the Service Level Agree-

ments (SLAs) signed, clients will consider moving to

other providers. They might even consider going back to

the buy-and-maintain model. Providers are under con-

stant pressure to improve performance, offer more diverse

resource deployment options, improve service usability,

and enhance application portability. A main weapon here

is an efficient resource allocation system. As in Fig. 1,

in the cloud scenario, clients are able to rent Virtual

Machines (VMs) from cloud providers. Providers offer

several deployment models where VM configuration dif-

fers in computing power, memory, storage capacity and
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Fig. 1 Cloud simulated environment and components

platform just to name a few factors. During the rental

period, clients require network capabilities. Clients will

have data frequently exchanged between client head-

quarters (or private clouds) and VMs or between two

client VMs. The aim here for a scheduler is to schedule

VM reservation requests and connection requests in the

fastest possible way while using the data center resources

optimally. This task is getting even harder with the emer-

gence of the big data concepts. IBM summarized big data

challenges into 4 different dimensions referred to as the

4 Vs: Volume, Velocity, Variety, and Veracity [2]. With

most companies owning at least 100 TB of data stored and

with 18.6 billion network connections estimated to exist

now [2], resource allocation efficiency has never been so

important.

When faced by the task of designing a resource alloca-

tion methodology, many external and internal challenges

should be considered. An attempt to summarize these

challenges can be found in [3]. External challenges include

regulative and geographical challenges as well as client

demands related to data warehousing and handling. These

limitations result in constraints on the location of the

reserved VMs and restrictions to the data location and

movements. External challenges also include optimizing

the chargingmodel in such a way that generatesmaximum

revenue. Internal challenges discussed in [3] include also

data locality issues. The nature of an application in terms

of being data intensive should be considered while plac-

ing the VMs and scheduling connections related to this

application.

To achieve these performance and cost objectives, cloud

computing providers need a comprehensive resource allo-

cation system that manages both computational and net-

work resources. Such an efficient system would have

a major financial impact as excess resources translate

directly into revenues.

The following sections are organized as follows: a

discussion of the related research efforts is intro-

duced in the following section leading to this paper’s

contribution. Detailed model description is given in

“Model description” section. “Mathematical formulation”

section presents the mathematical formulation of the

problem. The heuristic methods are presented in “Heuris-

tic solution” section. The suboptimal solution is presented

in “Suboptimal solution” section. Results are shown

and analyzed in “Results” section. Finally, “Conclusion”

section concludes the paper and conveys future work.

Related work
Previous attempts were made to optimize a diverse set

of cloud resources. In [4], Dastjerdi and Buyya propose a

framework to simplify cloud service composition. Their

proposed technique optimizes the service composition on

the basis of deployment time, cost and reliability preferred

by users. The authors exploit a combination of evolution-

ary algorithms and fuzzy logic composition optimization

with the objective of minimizing the effort of users while

expressing their preferences. Despite including a wide

range of user requirements in the problem modeling and

providing an optimization formulation along with a fuzzy

logic heuristic, [4] tackles the problem from the user’s

prospective rather than the provider’s. The main goal is

to provide the best possible service composition which

gives the problem a brokering direction instead of the

focus on cloud data center performance. SLA conditions

are considered an input guaranteed by the cloud provider

regardless of how they are achieved.

Wei et al. [5] address Quality of Service (QoS) con-

strained resource allocation problem for cloud computing

services. They present a game-theoretic method to find

an approximate solution of this problem. Their proposed

solution executes in two steps: (i) Step 1: Solving the inde-

pendent optimization for each participant of game theory;

(ii) Step 2: Modifying the multiplexed strategies of the

initial solution of different participants of Step 1 taking

optimization and fairness into consideration. The model

in [5] represents a problem of competition for resources

in a cloud environment. Each system/node/machine rep-

resents a resource that has a corresponding cost and

execution time for each task. More granularity is needed
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in terms of considering the multiple degrees of compu-

tational and network resources when scheduling. Mem-

ory, storage, computational powers and bandwidth (at

least) should be considered separately in an ideal model.

Moreover, network resource impact is not considered

thoroughly in [5]. Also, no detailed discussion for Virtual-

ization scenarios was given.

In [6], Beloglazov et al. define an architectural

framework in addition to resource allocation princi-

ples for energy efficient cloud computing. They develop

algorithms for energy efficient mapping of VMs to

suitable physical nodes. They propose scheduling algo-

rithms which take into account QoS expectations and

power usage characteristics of data center resources. This

includes, first, allocating VMs using modified best fit

decreasing method and then optimizing the current VM

allocation using VM migration. Considering challenges

migration might cause in terms of performance hiccups

caused by copying andmoving delays and scheduling chal-

lenges along with provider vulnerability for SLA violations

[7], a solution that minimizes the need for VM migration

is a preferable one. In addition, no deadline for tasks is

considered in that work.

Duan et al. [8] formulate the scheduling problem

for large-scale parallel work flow applications in hybrid

clouds as a sequential cooperative game. They propose a

communication and storage-aware multi-objective algo-

rithm that optimizes execution time and economic cost

while fulfilling network bandwidth and storage require-

ments constraints. Here, the computation time is modeled

as a direct function of the computation site location and

the task instead of using a unified unit for task size. Mem-

ory was not used as a resource. Task deadlines are not

considered. The goal is to complete a set of tasks that rep-

resent a specific application. This model is closer to job

execution on the grid rather than the model more com-

mon in the cloud which is reserving a VM with specific

resource requirements and then running tasks on them.

Moreover, the assumption presented is that data exchange

requests can run concurrently with the computation with-

out any dependency.

One more variation can be seen in [9] in which

two scheduling algorithms were tested, namely , green

scheduling and round robin. The focus was energy effi-

ciency again but the model offered contains detailed

network modeling as it was based on NS-2 network sim-

ulator. The user requests are modeled as tasks. Tasks are

modeled as unit requests that contain resource specifica-

tion in the form of computational resource requirements

(MIPs, memory and storage) in addition to data exchange

requirements (these include values representing the pro-

cess files to be sent to the host the task is scheduled on

before execution, data sent to other servers during exe-

cution and output data sent after execution). There was

no optimizationmodel offered. In [10], an energy-efficient

adaptive resource scheduler for Networked Fog Centers

(NetFCs) is proposed. The role of the scheduler is to

aid real-time cloud services of Vehicular Clients (VCs)

to cope with delay and delay-jitter issues. These sched-

ulers operate at the edge of the vehicular network and

are connected to the served VCs through Infrastructure-

to-Vehicular (I2V) TCP/IP-based single-hop mobile links.

The goal is to exploit the locally measured states of the

TCP/IP connections, in order to maximize the overall

communication-plus-computing energy efficiency, while

meeting the application-induced hard QoS requirements

on the minimum transmission rates, maximum delays

and delay-jitters. The resulting energy-efficient scheduler

jointly performs: (i) admission control of the input traf-

fic to be processed by the NetFCs; (ii) minimum-energy

dispatching of the admitted traffic; (iii) adaptive reconfig-

uration and consolidation of the Virtual Machines (VMs)

hosted by the NetFCs; and, (iv) adaptive control of the

traffic injected into the TCP/IP mobile connections.

In [11], an optimal minimum-energy scheduler for the

dynamic online joint allocation of the task sizes, comput-

ing rates, communication rates and communication pow-

ers in virtualized Networked Data Centers (NetDCs) that

operates under hard per-job delay-constraints is offered.

The referred NetDCs infrastructure is composed from

multiple frequency-scalable Virtual Machines (VMs), that

are interconnected by a bandwidth and power-limited

switched Local Area Network (LAN). A two step method-

ology to analytically compute the exact solution of the

CCOP is proposed. The resulting optimal scheduler is

amenable of scalable and distributed online implementa-

tion and its analytical characterization is in closed-form.

Actual performance is tested under both randomly time-

varying synthetically generated and real-world measured

workload traces.

Some of the more recent works include the FUGE solu-

tion [12]. The authors present job scheduling solution that

aims at assigning jobs to the most suitable resources, con-

sidering user preferences and requirements. FUGE aims

to perform optimal load balancing considering execu-

tion time and cost. The authors modified the standard

genetic algorithm (SGA) and used fuzzy theory to devise

a fuzzy-based steady-state GA in order to improve SGA

performance in terms of makespan. The FUGE algorithm

assigns jobs to resources by considering virtual machine

(VM) processing speed, VM memory, VM bandwidth,

and the job lengths. A mathematical proof is offered

that the optimization problem is convex with well-known

analytical conditions (specifically, KarushKuhnTucker

conditions).

In [13], the problem of energy saving management

of both data centers and mobile connections is tack-

led. An adaptive and distributed dynamic resource

https://sina-pub.ir


Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications  (2017) 6:6 Page 4 of 17

allocation scheduler with the objective of minimizing

the communication-plus-computing energy consumption

while guaranteeing user Quality of Service (QoS) con-

straints is proposed. The scheduler is evaluated for the

following metrics: execution time, goodput and band-

width usage.

When looking at the solutions available in the literature,

it is evident that each experiment focuses on a few aspects

of the resource allocation challenges faced in the area. We

try to summarize the different aspects in Table 1.

An ideal solution would combine the features/para-

meters in Table 1 to build a complete solution. This would

include an optimization formulation that covers compu-

tational and network resources at a practical granularity

level. Dealing with bandwidth as a fixed commodity is

not enough. Routing details of each request are required

to reflect the hot spots in the network. That applies for

computational resources as well. CPU, memory and stor-

age requirements constitute a minimum of what should

be considered. Moreover, A number of previous efforts

concentrate on processing resources while some focus

on networking resources. The question arising here is:

How can we process client VM reservation requests keep-

ing in mind their data exchange needs? The common

approach is to perform the VM placement and the con-

nection scheduling separately or in two different consecu-

tive steps. This jeopardizes the QoS conditions and forces

the provider to take mitigation steps when the VM’s com-

putational and network demands start colliding. These

steps include either over provisioning as a precaution or

VM migration and connection preemption after issues

like network bottlenecks start escalating. Minimizing VM

migration incidents is a major performance goal. Off-line

VM migration, however fast or efficient it may be, means

there is a downtime for clients. This does not really com-

ply with a demanding client environment where five 9’s

availability (99.999% of the time availability) is becom-

ing an expectation. As for online migration, it pauses a

loadwithmore copying/redundancy required. These chal-

lenges associated with VMmigration cause cloud comput-

ing solution architects to welcome any solution that does

not include migration at all.

This shortcoming calls for a resource allocation solu-

tion that considers both demands at the same time. This

solution would consider the VM future communication

demands along with computational demands before plac-

ing the VM. In this case, the network demands include

not only the bandwidth requirements as a flat or a chang-

ing number, but also the location of the source/destination

of the requested connection. This means the nodes/VMs

that will (most probably) exchange data with the VM.

As these closely tied VMs are scheduled relatively near

each other, network stress is minimized and the need to

optimize the VM location is decreased dramatically.

In this work, we aim to tackle the problem of allo-

cating client VM reservation and connection scheduling

requests to corresponding data center resources while

achieving the cloud provider’s objectives. Our main con-

tributions include the following:

1- Formulate the resource allocation problem for cloud

data centers in order to obtain the optimal solution. This

formulation takes into consideration the computational

resource requirements at a practical granularity while

considering the virtualization scenario common in the

cloud. It also considers conditions posed by the con-

nection requests (request lifetime/deadline, bandwidth

requirements and routing) at the same time. An important

advantage of this approach over approaches used in pre-

vious efforts is considering both sets of resource require-

ments simultaneously before making the scheduling

decision. This formulation is looked at from the providers’

perspective and aims at maximizing performance.

2- Make the formulation generic in a way that it does not

restrict itself to the limited environment of one data center

internal network. The connection requests received can

come from one of many geographically distributed pri-

vate or public clouds. Moreover, the scheduler is given the

flexibility to place the VMs in any of the cloud provider’s

data centers that are located in multiple cities. These data

centers (clouds) represent the network communicating

nodes. The complete problem is solved using IBM ILOG

CPLEX optimization library [14].

3- Introduce multiple heuristic methods to preform the

two phases of the scheduling process. Three methods

are tested for the VM reservation step. Two methods

are tested for scheduling connections. The performance of

these methods is investigated and then compared to some

of the currently available methods mentioned earlier.

4- Introduce a suboptimal method to solve the same

problem for large scale cases. This method is based on a

technique of decomposing the original problem into two

separate sub-problems. The first one is referred to as mas-

ter problem which performs the assignment of VMs to

data center servers based on a VM-node relation func-

tion. The second one, termed as subproblem, performs

the scheduling of connection requests assigned by master

problem. This suboptimal method achieves better results

than the heuristic methods while getting these results

in more feasible time periods in contrast to the optimal

formulation.

Model description
We introduce a model to tackle the resource alloca-

tion problem for a group of cloud user requests. This

includes the provisioning of both computational and net-

work resources of data centers. The model consists of a

network of data centers nodes (public clouds) and client

nodes (private clouds). These nodes are located in varying
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cities or geographic points as in Fig. 2. They are connected

using a network of bidirectional links. Every link in this

network is divided into a number of equal lines (flows).

It is assumed that this granularity factor of the links can

be controlled. We also assume that each data center con-

tains a number of servers connected through Ethernet

connections. Each server will have a fixed amount of

memory, computing units and storage space. As an ini-

tial step, when clients require cloud hosting, they send

requests to reserve a number of VMs. All of these VMs

can be of the same type or of different types. Each cloud

provider offers multiple types of VMs for their clients to

choose from. These types vary in the specification of each

computing resource like memory, CPU units and stor-

age. We will use these three types of resources in our

experiment. Consequently, each of the requested VMs is

allocated on a server in one of the data centers. Also, the

client sends a number of requests to reserve a connec-

tion. There are two types of connection [15, 16] requests:

1- A request to connect a VM to another VM where both

VMs were previously allocated space on a server in one

of the data centers (public clouds). 2- A request to con-

nect a VM to a client node. Here, the VM located in a

data center node connects to the client headquarters or

private cloud. The cloud provider-client network is illus-

trated in Fig. 2. For every request, the client defines the

source, destination, start time and duration of the connec-

tion. Thus, the objective becomes to minimize the average

tardiness of all connection requests. A sample of client

requests is shown in Table 2. Requests labeled “Res” are

VM reservation requests. Requests labeled “Req con” are

connection requests between a VM and a client node or

between 2 VMs. An example of the VM configuration is

shown in Table 3 [17, 18].

Mathematical formulation
To solve the problem of resource scheduling in cloud com-

puting environment, we introduce an analytical model

where we formulate the problem as a mixed integer linear

problem. We model the optimization problem of mini-

mizing the average tardiness of all reservation connection

requests while satisfying the requirements for virtual con-

nection requests of different clients. This model is solved

using IBM ILOG CPLEX software for a small set of

requests.

Notations

Environment and network parameters are described

below. The set of VMs and the set of servers

are represented by VM and Q respectively. Mqm

represents the amount of resources (e.g. mem-

ory) available on a server where q ∈ Q and

m ∈ {memory(mem),CPU unit(cu), storage(sg)} such

that Mqm = 30 indicates that available memory on

server q is 30 GB assuming that m denotes a specific

type of required resource, i.e., memory on a server. Kvm

is used to represent the amount of resources needed for

every requested VM such that Kvm = 7 indicates that

the VM v ∈ VM requires 7 GB of memory assuming

that m denotes memory resource on a server. The set of

network paths and the set of links are represented by P

and L respectively. alp is a binary parameter such that

alp = 1 if link l ∈ L is on path p ∈ P; 0 otherwise. In

our formulation, fixed alternate routing method is used

with a fixed size set of paths available between a node and

any other node. These paths represent the alternate paths

a request could be scheduled on when moving from a

server residing in the first node to a server residing in the

other node. bqcp is a binary parameter such that bqcp = 1

Fig. 2 An example of a cloud provider-client network: clients can connect from their private clouds, their headquarters or from a singular machine

on the Internet. The provider data centers represent public clouds

https://sina-pub.ir
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Table 2 An example of a set of resource allocation requests

Client Request Type Start Duration Source Destination

C-1 Res VM1 High-CPU T=10 125 - -

C-2 Res VM2 High-Storage T=15 400 - -

C-1 Res VM3 Standard T=20 150 - -

C-2 Res VM4 High-Memory T=10 70 - -

C-1 Req con VM-VM T=15 10 VM1 VM3

C-1 Req con VM-C T=18 20 VM3 C1

C-2 Req con VM-VM T=25 8 VM4 VM2

C-2 Req con VM-C T=30 30 VM4 C2

if path p ∈ P is one of the alternate paths from server,

q ∈ Q to server, c ∈ Q; 0 otherwise. I represents a set

of connection requests. Every connection request, i ∈ I

is specified by a source (si), a destination (di), requested

start time (ri) and connection duration (ti). TARD rep-

resents the allowed tardiness (accepted delay) for each

connection request. The formulation covers scenarios in

which networks can divide a link into shares or streams

to allow more flexibility with the formulation and cover a

wide set of situations. The set of shares (wavelengths in

the case of an optical network) could contain any number

of wavelengths based on the problem itself. The set λ is

the set of all available wavelengths in the network. The

parameter h used in constraint 6 indicates a large number

that helps to ensure the solution is derived according to

the conditions in the constraint. In addition, the binary

parameter Wij indicates if request i is scheduled before

request j. Using this parameter ensures constraint 6 is

tested only once for each pair of requests.

Decision variables

Fi is an integer decision variable which represents the

scheduled starting time for connection request, i ∈ I. Xvq

is a binary decision variable such that Xvq = 1 if v ∈ VM is

scheduled on server q ∈ Q. Yipw is a binary decision vari-

able such that Yipw = 1 if request, i ∈ I is scheduled on

path, p ∈ P and wavelength, w ∈ λ.

Objective function

The problem is formulated as a mixed integer linear pro-

gramming (MILP) problem. The objective of the MILP

Table 3 VM configuration for the 3 instance (VM) types used in

the experiment as offered by Amazon EC2 [17]

Instance type Standard extra High memory extra High CPU extra

large (SXL) large (MXL) large (CXL)

Memory 15 GB 17 GB 7 GB

CPU (EC2 units) 8 6.5 20

Storage 1690 GB 490 GB 1690 GB

is minimizing the average tardiness of client connection

requests to and from VMs. Tardiness here is calculated

as the difference between the requested start time by the

client (represented by ri) and the scheduled start time by

the provider (represented by Fi). The solver looks for the

solution that satisfies clients in the best way while not

harming other clients’ connections. The solution works

under the assumption that all clients requests have the

same weight/importance to the provider. The objective

function of the problem is as follows:

MIN
∑

i

(Fi − ri) i ∈ I, (1)

Constraints

The objective function is subjected to the following con-

straints:

∑

q∈Q

Xvq = 1, v ∈ VM, (2)

∑

p∈P

∑

w∈λ

Yipw = 1, i ∈ I, (3)

∑

v∈VM

Xvq × Kvm < = Mqm, q ∈ Q,m ∈ {m, c, s}, (4)

Yipw + (Xsiq + Xdic − 3bqcp) <= 2, (5)

i ∈ I, q ∈ Q, c ∈ Q, p ∈ P,w ∈ λ,
∑

p∈P

[ (ti × alp × Yipw) + (h × alp × Yipw) + (h × alp × Yjpw)]

(6)

+Fi − Fj + h × Wij < = 3h, i, j ∈ I, l ∈ L,w ∈ λ,

Wij + Wji = 1, i, j ∈ I, (7)

Xvq,Yipw,Wij ∈ {0, 1}, (8)

Fi − ri > = 0, i ∈ I, (9)

Fi − ri < = TARD, i ∈ I, (10)

Fi, ri > = 0, i ∈ I. (11)

In Eq. (2), we ensure that a VM will be assigned exactly

to one server. In (3), we ensure that a connection request

will be assigned exactly on one physical path and one

wavelength (stream/share of a link). In (4), we guarantee

that VM will be allocated on servers with enough capac-

ity of the computational resources required by the VMs.

In (5), we ensure that a connection is established only on

one of the alternate legitimate paths between a VM and

the communicating partner (another VM or client node).

In (6), we ensure that at most one request can be sched-

uled on a certain link at a time on each wavelength and

that no other requests will be scheduled on the same link

and wavelength until the duration is finished. Constraint

(7) ensures constraint 6 will only be tested once for each
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pair of requests. It indicates that request i will start before

request j. In Eqs. (9) and (10), we ensure that the scheduled

time for a request is within the tardiness window allowed

in this experiment.

Heuristic solution

Heuristic model

The proposed model in this paper tackles the resource

allocation challenges faced when provisioning computa-

tional resources (CPU, memory and storage) and net-

work resources. A central controller manages these

requests with the objective of minimizing average tardi-

ness and request blocking. The solution aims at solving

the provider’s cost challenges and the cloud applications

performance issues.

For every request, the client defines the source, destina-

tion, start time and duration of the connection. Thus, this

problem falls under the advance reservation category of

problems.

The central controller (could be a Software Defined

Networking controller (SDN) [19, 20] for example) keeps

the data tables of the available network paths, available

server resources and connection expiration times in order

to handle newly arriving requests. The controller then

allocates the requested VMs on servers according to the

method or policy used. It updates the resource availability

tables accordingly. After that, the controller schedules and

routes connection requests to satisfy the client require-

ments. Network path availability tables are also updated.

As an initial objective, the controller aims at minimizing

the average tardiness of all the advance reservation con-

nection requests. Also, a second objective is minimizing

the number of the blocked requests. This objective is to

be reached regardless of what path is used. Heuristic poli-

cies/techniques proposed aim at getting good, although

not mathematically optimal, performance metric values

while providing this feasible solution within acceptable

amounts of time.

Heuristic techniques for minimizing tardiness

The allocation process is divided into two consecutive

steps:

1- Allocation of VMs on data center servers. Here, all

the VM reservation requests are served based on server

resource availability before any connection request is

served.

2- Scheduling of connection requests on the available

network paths. This happens after all VMs have been

allocated resources and started operation on the servers.

For the first subproblem, three heuristic techniques

were evaluated. For the second step (subproblem), two

heuristic techniques were tested. For a complete experi-

ment, one heuristic for each subproblem is used. These

heuristics are divided as follows.

VM reservation heuristic techniques

a) Equal Time Distribution Technique (ED):

In this heuristic, TMi is the total time reserved by

connection requests from the virtual machine VMi

(sum of the connection durations). Next, the share of

one server is calculated by dividing the total time

units all the VMs have requested by the number of

servers. This is based on the assumption that all

servers have the same capacity (for computational

and network resources). Then, for each server, VMs

are allocated computation resources on the

corresponding servers one by one. When the server

is allocated a number of VMs that cover/consume

the calculated server share, the next VM is allocated

resources on the following server and the previous

steps are repeated. The algorithm is described in

pseudo code in Fig. 3.

b) Node Distance Technique (ND):

First, the average distance between each two nodes is

calculated. The two nodes furthest from each other

(with maximum distance) are chosen. Then, the

maximum number of VMs is allocated on the servers

of these two nodes. Next, the remaining nodes are

evaluated, the node with maximum average distance

to the previous two nodes is chosen. The same

process is repeated until all the VMS are scheduled.

Fig. 3 Equal time distribution heuristic technique
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The algorithm is described in pseudo code in Fig. 4.

fillNode is a function that basically tries to schedule

as many VMs as possible on the called node until the

node’s resources are exhausted. fillNode is illustrated

in Fig. 5.

c) Resource Based Distribution Technique (RB):

In this heuristic, the choice of the server is based on

the type of VM requested. As shown in Table 3, three

types of VMs are used in the experiment: i) High

Memory Extra Large (MXL) has high memory

configuration; ii) High CPU Extra Large (CXL) has a

high computing power; iii) Standard Extra large

(SXL) is more suited to typical applications that need

a lot of storage space. Depending on the type of VM

requested by the client, the heuristic picks the server

with the highest amount of available corresponding

resources. The VM then is allocated resources on

that server. This causes the distribution to be more

balanced.

Connection reservation heuristic techniques

a) Duration Priority Technique (DP):

Fig. 4 Node distance heuristic technique

Fig. 5 Function: fillNode

In this heuristic, connections with the shortest

duration are given the priority. First, connection

requests are sorted based on the requested duration.

The following step is to pick the connection with the

shortest duration and schedule it on the shortest

path available. This step is repeated until all

connection requests are served. The algorithm is

described in pseudo code in Fig. 6.

b) Greedy Algorithm (GA):

In this heuristic, illustrated in Fig. 7, scheduling is

based on the connection Requested Start Time

(RST). Connection requests with earlier RST are

scheduled on the first path available regardless of the

path length.

Complexity analysis of the heuristic solutions

The resource allocation problem in a cloud data center

is a variation of the well known knapsack problem. The

knapsack problem has two forms. In the decision form –

Fig. 6 Duration priority heuristic technique
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Fig. 7 Greedy heuristic technique

which is considered less difficult - as it is NP-Complete-

the question is: Can an objective value of at least K

be achieved without exceeding a specific weight W? The

optimization form of the problem – which is the form

we try to solve in this work - tries to optimize the possible

objective value. The optimization form is NP-Hard. This

means it is at least as hard as all the NP problems. There

is no current solution in polynomial time for this form.

This motivated the introduction of the heuristic algo-

rithms. It might be of interest to the reader to visit the

complexity of the introduced heuristic algorithms.

First, we revisit the variables covered in this analysis.

VM represent the VM set, N represent the set of nodes,

S is the set of servers, R is the set of connection requests,

T is the allowed tardiness per request and D is the aver-

age duration of a connection. This analysis is offered

with the sole purpose of being an approximation of the

time complexity to show that these algorithms run within

polynomial time and in turn- can be practically used by

large scale cloud networks. Looking at the introduced

algorithms one by one, we find that Equal time distribu-

tion has a complexity of O(|VM||R| + |S|). Node distance

algorithms runs in O(|N3|+|S|+|V |). Resource based dis-

tribution runs in O(|V ||S|) which constitutes the quickest

among the 3 VM placement algorithms we introduced. As

for connection scheduling heuristics algorithms, Duration

priority runs in O(|R|.lg|R|+ |R|.T .D) or O(|R|.(1+ lg|R|+

T .D). Finally, the greedy connection scheduling algorithm

runs in O(R.T .D). Therefore, all the mentioned algorithms

run in polynomial times and can yield a result for large

scale problem in practical time periods.

Suboptimal solution
Although an optimal solution can be obtained using the

formulation in “Mathematical formulation” section, this is

only feasible for small scale problems. Even when using

a 5-node network with 4 servers and 7 links connect-

ing them, the number of optimization variables can be as

big as 5000 variables when scheduling 50 requests that

belong to 5 VMs. On the other hand, heuristic methods

achieve feasible solution in relatively quick times but the

solution quality cannot be proven. This motivates us to

move to the next step which is finding a method that

achieves a suboptimal solution. The method introduced

here is based on a decomposition technique. We illustrate

the method in Fig. 8. The steps go as follows.

1- In Step 1, a set of known connection requests are pre-

processed to generate interdependency measurements.

This is figured out by calculating the frequency of com-

munications between each two points in the network. To

bemore specific, the frequency of the connection requests

between each VMi and VMj is calculated as well as the

frequency of connection requests betweenVMi and nodek
which represent a private cloud. This gives us an indica-

tion of which direction most of the VM’s connections go.

This is closely correlated with the dependencies this VM

has and should ideally affect where it is scheduled.

Fig. 8 The suboptimal method step by step
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2- In the second step, a utility function is constructed

based on the connection frequency values generated in

step 1. The utility function serves as the objective function

of the master problem that allocates VMs on hosts.

3- Next, a master problem in which we handle the

assignment of VMs to servers and connections to spe-

cific paths without scheduling them is generated. In other

words, we solve for the decision variable Xvq without

considering any scheduling constraints. This produces

a feasible assignment for VMs that aims at scheduling

interdependent VMs close to each other.

4- After getting the VM assignment locations, A sub-

problem in which we try to find the optimal scheduling

for the input connections under these specific VM assign-

ment conditions. In other words, we solve for the decision

variable Yipw, Fi in the subproblem. The minimum tar-

diness produced from the subproblem is the objective

value we are looking for. As in any decomposition based

optimization, the success of the decomposition technique

depends on the way the solution of the master prob-

lem is chosen. We formulate the master problem and the

subproblem as follows.

Master problem formulation

We first introduce Distance function. It represents the dis-

tance between two nodesmeasured by the number of links

in the shortest path between them. A frequency func-

tion based on connection duration is also added. This

is a function where the connection duration is preferred

as dominant factor. The frequency function is a value

that will represent interdependency between two VMs or

between a VM and a private cloud (client node). Another

alternative here is depending on the number of connec-

tions requested between these two points rather than

the total amount of connection time. Once we calcu-

late the frequency function values, the utility function is

constructed as:

MIN
∑

v∈VM

∑

u∈VM

∑

s∈Q

∑

q∈Q

(Freqvu×Distancesq×Xvs×Xuq),

(12)

Subject to

(2), (4). (13)

The master problem finds the VM allocation that maxi-

mizes the value of point to point interdependency.

Subproblem

As the subproblem focuses on scheduling, its objective

function is the same as in the optimal form, i.e., mini-

mizing the average connection tardiness. In this case, the

final value of the relaxed objective will come directly from

the solution of the subproblem. The difference is that the

subproblem already knows where the VMs are allocated

and is scheduling connections accordingly. The objective

of the sub-problem is as follows.

MIN
∑

i

(Fi − ri) i ∈ I, (14)

Subject to

(3), (5) − (11). (15)

Results

Simulation environment

The problem is simulated using a discrete event based

simulation program and solved on a more practical scale

using the heuristic search techniques discussed in the pre-

vious sections. The network used for the experiment is

the NSF network (in Fig. 9). It consists of 14 nodes of

which 3 are data center nodes and the rest are considered

client nodes [21]. Nodes are connected using a high speed

network with a chosen link granularity that goes up to 3

lines (flows) per link. Fixed alternate routing method is

used with 3 paths available between a node and any other

node. Server configuration and request data parameters

are detailed in Table 4. Preemption of connection requests

is not allowed in this experiment.

Heuristics

As explained in the previous sections, every experiment

includes two phases and hence two heuristics are needed:

one to schedule VMs on servers and the other to sched-

ule connection requests. The five techniques explained

earlier yield 6 possible combinations. However, We chose

to show the results from the best 4 combinations (best

4 full-solutions). This is due to space constraints. The 4

chosen combinations cover all the 5 heuristics. The simu-

lation scenarios and combined heuristics used for the two

subproblems are as follows.

1-ED-GA: Equal Time Distribution technique and

Greedy algorithm.

2-RB-DP: Resource Based Distribution technique

and Duration Priority technique.

3-ED-DP: Equal Time Distribution technique and

Duration Priority technique.

4-ND-DP: Node Distance technique and Greedy

algorithm.

In Figs. 10 and 11, the 4 methods’ performances are

compared in terms of the blocking percentage. This

is measured as the request load increases. Figure 10

shows a comparison of the percentage of blocked requests

(requests that could not be scheduled) where the allowed

tardiness parameter value is very small (1 time unit). This

means that this scenario resembles request requirements
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Fig. 9 The NSF network of 14 nodes [29]

imposing close to real time scheduling. The x axis repre-

sents request load which is measured by λ/µ. λ represents

the arrival rate andµ represents the service rate. Figure 11

shows the same comparison when the allowed tardiness

per request is large (30000 time units). In both scenarios,

it is noticed that ED-DP and RB-DP methods have shown

a clear advantage by scoring consistently lower blocked

requests. The common factor for these 2 methods is using

DP to schedule connections. Therefore, this indicates a

clear advantage of using DP over GA when scheduling

connection requests in tight or real time conditions. In

addition, As seen in Fig. 11, RB-DP has shown a decent

advantage over ED-DP in terms of blocking percentage.

Table 4 Experiment parameter configuration

Parameter Value

Total number of servers 132

Servers/ data center 44

VM reservation requests 200

Connection requests 10000

RST distribution Poisson with Lambda = 10

Connection duration distribution Normal with mean = 200 time units

Source and destination distribution Uniform

Allowed tardiness per request ranging from 1 to 500 time units

Total experiment time 70,000 time units

Regarding the other performance metric, average tardi-

ness per request, the measurements are shown in Fig. 12.

The figure shows a comparison of the average tardi-

ness per request produced when using the four meth-

ods. Allowed tardiness in that experiment is small (25

time unit). Once more, ED-DP and RB-DP methods have

shown a clear advantage by scoring consistently lower

tardiness per request. Also, it is noticed from the figure

the ED-DP produces slightly better results (less average

Fig. 10 Request Blocking results for scheduling methods (allowed

tardiness/request =1 time units)
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Fig. 11 Request Blocking results for scheduling methods (allowed

tardiness/request =30,000 time units)

tardiness) than RB-DP. Therefore, using RB-DP method is

more suitable to scenarios where there is an emphasis on

serving the largest number of requests. On the other hand,

using ED-DP is more suitable to scenarios where the indi-

vidual request performance or service level is prioritized

over serving more requests.

Relaxed solution results

With regards to the network we tested on, a 5-node net-

work was used in these tests with 2 as data center nodes

and the rest as client nodes (private clouds). Four servers

were used in the tests with 2 servers in each data center.

To connect the nodes in the physical network, 7 links were

used and 20 different paths were defined. Two alternate

routing paths were defined for each couple of nodes. The

Fig. 12 Request average tardiness results for scheduling methods

(allowed tardiness/request =25 time units)

input contained data corresponding to 5 VM instances.

The choice of this network is due to two factors. First, con-

densing requests in an architecture with limited resources

puts the network under high load to eliminate the effect

the network capacity would have on the result. This would

allow more control by eliminating any factors related to

network design or node distribution that might ease the

pressure on the scheduling algorithm. This way, the prob-

lem size is controlled directly using only the parameters

we are testing for which are the number of requests, their

specification and their distribution. Second, it makes it

easier to compare results and execution times of relaxed

solution to those of the optimal solution.

For the connection requests coming from the clients, as

in [22], their arrival rate values were set according to a

Poisson process. The connection request lifetime (dura-

tion) was normally distributed with an average of 100 time

units and the total number of connection requests was

gradually increased from 20 up to 3000 requests. Every

connection request is associated with a source, a destina-

tion, a requested start time and a duration. The source

nodes/VMs were uniformly distributed.

To evaluate the optimal and relaxed solutions, we used

the IBM ILOG CPLEX optimization studio v12.4. Both

the optimal and relaxed solution were programmed using

Optimization Programming Language (OPL) and multi-

ple testing rounds were performed. Both solutions were

tested for multiple values of normalized network load.

Table 5 shows a comparison between the objective val-

ues obtained using the optimal scheme vs. the values

obtained from the relaxed (decomposed) scheme for small

scale problems (up to 200 requests). While the optimal

solution was able to schedule all requests without any

delay (tardiness), the relaxed solution achieved an accept-

able average tardiness in comparison. As noticed from

the table, the execution times for the optimal scheme are

slightly better for small data sets, but as the number of

requests grows, the difference in execution times becomes

evident. This goes on until the optimal solution becomes

infeasible while the relaxed solution still executes in a rela-

tively short period. The maximum number of requests the

optimal solution is able to solve depends on the machines

used and the network load parameters used to generate

the input data.

Concerning large scale problems, the experimental

results shown in Table 6 illustrate that the relaxed solution

has achieved an acceptable average tardiness in compar-

ison to the optimal solution. The effect of increasing the

problem size on the value of average tardiness when using

the relaxed solution is evident. The average tardiness

achieved is less than 10% of the average request duration

(lifetime). This is well within the bound set in [23] for

acceptable connection tardiness which is half (50%) the

lifetime or requested duration of the connection. This is
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Table 5 Optimal vs. relaxed solution values and execution times

Number of requests Network load Optimal solution Relaxed solution

Average tardiness value Execution time Average tardiness value Execution time

30 0.86 0 3 s 5.73 8.14 s

50 0.86 0 7 s 10.12 9 s

200 0.86 0 2 min 24 s 10.785 1 min 2 s

also a considerable improvement over the performance of

the heuristic solution which is shown in the same table

(average tardiness values around 20% of request lifetime).

The table also shows an increase in the average tardiness

when increasing the number of requests (problem size).

This is due to the fact that tardiness accumulates as pri-

ority is given to the request arriving earlier. In terms of

execution time, as the number of requests grow, the differ-

ence in execution time between the optimal and relaxed

solutions becomes evident. The optimal solution becomes

infeasible while the relaxed solution still executes in a rel-

atively short period scheduling 3000 requests in around

in a period between 8–11 minutes depending on the

network load.

To illustrate the impact of the allowed tardiness param-

eter on the request acceptance ratio, the results in Table 7

are presented. Using the heuristic solution with the com-

bination RB-DP, the table shows the increase in the

acceptance ratio as we increase the allowed tardiness per

request for a specific network load.

To measure the acceptance ratio, we introduced a max-

imum waiting period parameter (or allowed tardiness as

discussed in previous sections). This parameter represents

the period of time a connection request will wait to be

served before it is considered blocked. For that, an ideal

value is the same value used in [23], namely, half the

request lifetime. In other words, If the connection waited

for more than 50% of its duration and it was not scheduled

then it is blocked or not served. Table 6 shows the accep-

tance ratio and the average tardiness for requests with an

average duration of 100 time units.

Considering this scenario where requests with high tar-

diness are blocked presents a trade off between average

Table 6 Execution times & average tardiness for connection

requests for large scale problems when increasing the average

connection duration to 100 Time units

Network
load

Heuristic solution
(RB-DP) Average
tardiness (percentage
of duration/lifetime)

Relaxed solution
average tardiness

Relaxed solution
execution time

0.86 19.81% 2.88% 8 min 21 s

0.93 21.18% 6.36% 8 min 54 s

1 22.54% 9.08% 11 min 31 s

connection tardiness and the percentage (or number) of

blocked connections. It is noticed that the average tar-

diness decreases as we remove the requests with high

tardiness and consider them blocked. An average tardi-

ness of less than 2% of a request lifetime can be guaranteed

if we are willing to sacrifice 13% of the requests as blocked.

Deciding weather to use this scenario or not is up to the

cloud solution architects. This depends on the client sen-

sitivity to the precision/quality vs. the speed of achieving

results.

Comparison with previous solutions

When planning the comparison between the proposed

solution and solutions available in the literature, we are

faced with a challenge. As discussed in detail in “Related

work” section, the available solutions are diverse in terms

of the parameters considered and the covered dimen-

sions of the cloud resource allocation problem. This limits

the number of solutions that can realistically be used to

solve this particular flavor of the problem. However, we

were able to use the algorithms implemented in [6] (Mod-

ified best fit decreasing method) and [24, 25] (GREEN

scheduling) to solve the same problem and compare their

performance to the method we developed. The focus was:

network capacity (minimizing blocking percentage) and

performance (when blocking is not an issue, minimizing

the average tardiness per served request is a priority). This

comparison was performed for a smaller network first,

in order to explore the stress effect on a cloud network.

Then, the same comparison is performed for a larger

more realistic network scenario. As in the previous exper-

iments, the tests were performed for different problem

sizes and various levels of allowed tardiness per requests.

Small network results

Figure 13 compares the three algorithms’ performance

in terms of request blocking percentage for different

Table 7 Connection requests acceptance rate for different

network loads using the relxed solution

Allowed tardiness (percentage of
request lifetime or duration)

50% 200% 1000%

Acceptance rate 86% 87% 100%

Average tardiness for accepted
requests

1.98% 16.72% 219.767%
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Fig. 13 Request blocking percentage results for 3 scheduling

algorithms measured for 4 different allowed tardiness cases

scenarios as the allowed tardiness level increases. The

figure shows that our technique (RB-DP) performs con-

sistently better (lower blocking percentage) than Green

scheduling algorithm. It also shows that RB-DP performs

at the same level as MBFD for low allowed tardiness

levels before showing an advantage for high allowed tar-

diness. Figure 14 presents results for the other metric,

average request tardiness. Figure 14 shows that RB-DP

starts by performing on the same level of the other two

algorithms and while we increase the allowed tardiness

level for requests, RB-DP shows clear advantage (as seen

in the last case of allowed tardiness =1000 time units).

The effect of increasing the allowed tardiness is basi-

cally eliminating the need to schedule each request as

soon as it arrives (to avoid blocking requests) Instead, it

focuses the experiment on showing the algorithm that can

serve/schedule requests in the most efficient way and this,

in turn, decreases the average tardiness per requests.

Large network results

The same trends carry on while testing on large scale net-

works (the NSF network). In Fig. 15, blocking percentage

is shown for the three algorithms for different problem

sizes. Problem size here is represented by the number

of requests submitted to the central controller per cycle

Fig. 14 Request average tardiness results for 3 scheduling algorithms

measured for 4 different allowed tardiness cases

Fig. 15 Request blocking percentage results for scheduling methods

with allowed tardiness=5 units (very low)

(arrival rate). These results are shown for allowed tar-

diness level = 5 time units (very low level) which adds

extra pressure to serve requests within a short period of

their arrival and focuses the algorithms work on serving

the highest number of requests not on tardiness levels. In

Fig. 16, the same results are shown for a higher number of

requests ranging from 3000 to 10,000 requests per cycle.

This confirms that our experimental results are consistent

when the network is exposed to higher load that is close to

or exceeds its capacity. Looking at both figures, they show

that our technique (RB-DP) performs consistently better

than the other two algorithms under high loads.

Figure 17 explores the performance of the algorithms in

the specific case of high allowed tardiness levels.

RB-DP offers clear advantage in terms of the blocking

percentage metric for various allowed tardiness levels.
Moving to the second metric, Fig. 18 shows the perfor-

mance of the three algorithms in terms of average request

tardiness while changing the allowed tardiness levels (or

request lifetime). RB-DP performs on a comparable level

to the other two algorithms for small allowed tardiness

levels and then exceeds the performance of MBFD start-

ing medium levels of request lifetimes and then clearly

Fig. 16 Request blocking percentage results for 3 scheduling

algorithms for a large number of requests per cycle (1–10k)
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Fig. 17 Request blocking percentage results for scheduling methods

while changing allowed tardiness levels

exceeds both algorithms with the higher levels starting

400 time units.

These results prove the potential our solution has in

terms achieving better performance in both blocking per-

centage (more accepted connection requests and less net-

work congestion) and average tardiness (better Quality of

Service conditions for cloud users).

Conclusion
We introduced a comprehensive solution to tackle the

problem of resource allocation in a cloud computing data

center [26]. First, the problem was formulated as a mixed

integer linearmodel. This formulation was solved using an

optimization library for a small data set. However, finding

the optimal solution for larger more practical scenarios is

not feasible using the optimal mathematical formulation.

Therefore, we introduced 5 heuristic methods to tackle

Fig. 18 Request average tardiness results for scheduling methods

(allowed tardiness/request = 25 time units)

the two sides of the problem, namely VM reservation and

connection scheduling. The performance of these tech-

niques was analyzed and compared. Although the solution

scale issue is solved, a heuristic solution does not offer

optimality guarantees. This constituted the motivation to

introduce a suboptimal solution. The solution contained

4 steps that exploited the VM interdependency as a domi-

nant factor in the VM allocation process. This allows us to

solve the scheduling phase optimally in the following step

which causes the solution to improve considerably. The

relaxed solution achieved results matching with parame-

ters preset in the literature for average connection tardi-

ness. The results were also shown for the scenario where

request blocking is allowed. Results were achieved with-

out sacrificing the computational feasibility which shows

our method to be a valid solution for reaching acceptable

connection tardiness levels. Furthermore, the proposed

solution was compared to two of the prominent algo-

rithms in the literature. The proposed solution was shown

to be advantageous in terms of minimizing both aver-

age request tardiness and blocking percentage formultiple

cloud network scenarios. This makes it a strong candidate

to be used in cloud scenarios where the focus is onmetrics

like more accepted connection requests and less network

congestion or request average tardiness (better quality of

service conditions for cloud users).

In the future, we plan to use our scheme to experiment

with other important objectives of the cloud provider

[27, 28]. Maintaining privacy while processing and com-

municating data through cloud resources is a critical chal-

lenge. Privacy is a major concern for users in the cloud

or planning to move to the cloud. Improving data privacy

metrics is not only important to clients, but also criti-

cal for conforming with governmental regulations that are

materializing quickly. This means that a resource alloca-

tion system should extend its list of priorities to include

privacy metrics in addition to typical performance and

costmetrics. Constraints on the data handling, datamove-

ment and on scheduling locations should be seen. The

privacy extends to data on resources required by the cloud

clients. We have investigated some of the topic’s chal-

lenges at length in [3]. Our next step is to extend our

model to explore these possibilities. This would add a

different dimension to give a competitive advantage to

cloud providers which offer the expected level of privacy

to prospective clients.
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