
Chinese Journal of Electronics

Vol.25, No.5, Sept. 2016

The Design and Implementation of Embedded

Security CPU Based on Multi-strategy∗

LI Dongfang1,2, ZHAN Xin1,3, TONG Qiaoling1, ZOU Xuecheng1 and LIU Zhenglin1

(1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China)

(2. Beijing Institute of Computer Technology and Application, Beijing 100854, China)

(3. Department of Electrical and Computer Engineering, Texas A&M University, Texas 77843, USA)

Abstract — Control flow monitoring, information flow
tracking and memory monitoring are the three main solu-

tions to enhance the security of embedded system at the
hardware architecture level. However, most of the current

studies about the security of embedded system consider the

above solutions in separate dimensions rather than a com-
bined effort. We start from the operation model at the in-

struction level, and propose a security multi-strategy which
combines information flow tracking and memory monitor-

ing by studying the security operating mechanism of em-

bedded system. As a hardware approach this strategy ex-
tends the embedded processor architecture with additional

security defense control. The experimental results show

this multi-strategy is more effective and can detect more
malicious attacks than a single solution. The effectiveness

of our proposed security multi-strategy has been verified in
a Field programmable gate array (FPGA) prototype plat-

form based on a customized Leon3 microprocessor.

Key words — Information flow security, Taint tracking,

Memory monitor module, Embedded processor architec-

ture.

I. Introduction

With the widely use of embedded systems, the secu-

rity issues of embedded processors attract the increasing

attentions. So far the research on embedded processor se-

curity mainly focuses on control flow monitoring, infor-

mation flow tracking and memory monitoring[1]. However,

most of the existing work considers them as separate di-

mensions, and very little work has proposed integrated

approach and addressed multiple dimensions at the same

time, which motivates our work.

Information flow tracking[2−7], also known as informa-

tion flow control or taint tracking, is an important secu-

rity policy. Dynamic information flow tracking (DIFT)[8]

tags the untrusted information as tainted one and tracks

its propagation in a security system. The DIFT appends

every word in the system memory with a label, and tags

new information coming from the untrusted one as tainted

information. The security system will generate a secu-

rity exception, in the case of tainted information which is

used in a possible insecure way, such as running a tainted

Structured query language (SQL) instruction or releasing

a tainted pointer. Actually, many researches on informa-

tion flow tracking have been done.

Information flow monitoring focused on tracking the
flow of the external data into the processor (e.g. data from

the General purpose input output (GPIO), serial ports,
and networks), which can help prevent the illegal oper-
ations caused by these external data or program, such
as stealing users’ private information stored in the sys-
tem. However, the information flow monitoring mecha-

nism doesn’t make a detailed analysis of the security of

external data or programs. It only decides which data

taint needs to propagate, and decides which data needs to
be checked when checking the taint. Although the mecha-
nism of information flow monitoring can detect some com-
mon attacks, it may result in the high false positive rate

for other safety program in the system. In addition, in

order to detect a certain type of attacks, it needs to con-

figure a Taint propagation register (TPR) and a Taint

detection register (TDR), if the type of attack changes,

both of them need to be changed accordingly, which un-

doubtedly limits its flexibility.

Memory monitoring mechanism[9−13] achieves the

purpose of detecting malicious attacks by protecting data

space when the program runs and preventing malicious

code from unauthorized modification of data space of a

program. The program’s data space includes stack sec-

∗Manuscript Received Jan. 10, 2014; Accepted Feb. 1, 2016. This work is supported by the National Natural Science Foundation of

China (No.61176026, No.61376026).
c© 2016 Chinese Institute of Electronics. DOI:10.1049/cje.2016.08.040

https://sina-pub.ir


802 Chinese Journal of Electronics 2016

tion, heap section, global data section and text section.

Implementing memory monitoring strategy in the embed-

ded processor can prevent many common buffer overflow

attacks, such as stack overflow attacks and heap over-

flow attacks. There are several hardware-based methods

of memory monitoring.

Memory monitoring needs to make a detailed analysis

about the security of a program itself, including the type

of instructions executed and the boundary information

of the program’s data space, which determine whether

the instructions executed have threats on the program’s

data space. However, the process of compiling source code

written by advanced programming language into machine

instructions has a great relationship with the type of com-

piler. For a given passage of source code written by ad-

vanced programming language, the machine instruction

compiled by different compiler may be different. Then the

result analyzed by the memory monitoring module may

also be different, which may lead to a high false positive

rate and a high false negative rate. The above analysis

shows that, in embedded systems, a single memory moni-

toring strategies is not enough to prevent all the malicious

attacks.

In summary, the above three methods can improve

the security of embedded processors with their own char-

acteristics and advantages/disadvantages. Based on the

above analysis, we give full consideration to their own

strengths of information flow tracking and memory mon-

itoring and combine them together. We design the infor-

mation flow monitoring by modifying the Register trans-

fer level (RTL) code of the kernel Integer unit (IU) and

adding the TCR at the kernel IU. The information flow

monitoring provides the functionality of classifying all

kinds of attacks, capability of flexibly programming secu-

rity policies, and capability of simultaneous multi-attack

defending at very low cost. We implement the memory

monitoring by adding a hardware module which runs in

parallel with the embedded processor and it can effec-

tively detect common buffer overflow attacks. Finally, we

mapped our design to an FPGA development board and

developed a prototype system. In order to make better

use of these two methods, we adjust the security level

of information flow tracking. Experimental results show

that compared with a single strategy of information flow

tracking and single strategy of memory monitoring, our

multi-strategy can effectively detect more kinds of attacks

at run time, which takes advantages of both the informa-

tion flow tracking and memory monitoring, then enhances

the overall security of embedded systems.

II. Architecture

As our design is a combination of information flow

tracking and memory monitoring, the architecture of our

design is divided into two parts: architecture of informa-

tion flow tracking and architecture of memory monitoring.

1. Architecture of information flow tracking

By following the idea of DIFT, the embedded proces-

sor kernel is extended with taint spreading tags in order

to provide taint tracking in a propagation environment.

Every word is appended with 4 tag bits as specified in the

Table 1. Because of the added tag bits, several modifica-

tions are applied in the hardware architecture, such as 4

bits extension in all registers, caches, memories and data

bus for the taint propagation. When the Central process-

ing unit (CPU) is running the instruction pipeline, all the

data is attached with a 4 bits tag for tracking the prop-

agation of data source. The tag bits extended in bus and

memory are added on the Most significant bit (MSB) of

data.

Table 1. Research subjects

Tag bits Definition

Taint mark bit:

Tag [0] ‘1’: The data is untrusted;

‘0’: The data is trusted.

Threat level classification bits:

‘00’: The data has no threat;

‘01’: The data is in a low threat level;
Tag [2:1]

‘10’: The data is in a middle threat level;

‘11’: The data is in a high threat level.

Sensitive information mark bit:

Tag [3] ‘1’: The data is sensitive;

‘0’: The data is insensitive.

The process of taint tracking contains three tasks,

namely the taint marking, taint propagation and taint

checking. We propose to use threat level classification de-

pending on the processor’s actions to the external data.

We consider that accuracy of the taint tracking can be

enhanced when the system is operating and all abnormal

behaviors can be internally monitored. We set the prop-

agation logic as all-propagation, all taints will pass the

all-propagation logic.

2. Architecture of memory monitoring

The amount of buffer information obtained through

dynamic monitor decides the defending policy of the hard-

ware security module. The buffers defined in the program

are in the data space of the program.

A typical program data space as shown in Fig.1 in-

cludes stack section, heap section, global data section and

text section. The local pointers, variables and local arrays

defined in the program are stored in the stack section. A

buffer defined by a memory allocated function such as

malloc belongs to heap section. The global pointers, vari-

ables and global arrays defined in the program are saved

in the global data section. Buffer overflow attack usually

happens in these three sections, and the attack to stack

section is the most frequent one. The program’s binary

executable code is stored in text section. The text section

https://sina-pub.ir


The Design and Implementation of Embedded Security CPU Based on Multi-strategy 803

is read-only, so it is hard to be rewritten and it has a good

resistance to tampering attacks.

Fig. 1. Diagram of a typical program data space

1) Stack segment protection

As to stack segment protection, we reduce the range

protected and only protect return address and stack point-

ers which have relatively fixed position in stack and are

frequently attacked in stack.

2) Heap segment protection

As the accessibility of bound information in the stack

section is limited, which makes a complete data protec-

tion of the stack data space impossible, the situation in

heap section is totally different. The heap memory is al-

located by a special function such as malloc dynamically.

From the view of hardware, we can recognize the function

malloc from its characteristic instructions and then obtain

the buffer’s start address and length information from the

function’s parameters, which can be used to completely

prevent buffer overflow in the heap segment.

3) Data segment protection

The global variable, global array, static variable and

static array are all stored in the global data space. The

data that decides the executing direction of the program is

called control data, such as the return address and func-

tion pointer, etc. If an attacker wants to get control of

the program, he must modify the control data first. The

control data is the address of certain instruction in the

program, so it is stored in a word memory unit. The fol-

lowing operation to the memory unit is supposed to be

word operation accordingly. The operation to a memory

unit related to a character or a string array is byte op-

eration. Usually, an attacker overflows a string array by

changing the content of adjacent memory units. If the

memory units happen to store a function pointer and the

operation on it is a byte operation which is inconsistent

with the previous operation mode to the memory unit,

then an attack can be detected. We will construct our

hardware protection module based on the above security

policy.

III. Hardware Implementation

In order to validate the effectiveness and measure

the performance of the combination of information flow

tracking and memory monitoring, we use the LEON3

processor[14] as our prototyping platform, which is a 32

bits processor with the SPARC-V8 architecture.

We implement information flow monitoring and mem-

ory monitoring respectively by modifying the RTL code

of the kernel IU, adding the TCR at the kernel IU and

adding a hardware module which runs in parallel with the

embedded processor. Fig.2 shows a simplified diagram of

the hardware of our design.

To integrate the information flow monitoring function,

we modified the open-source RTL codes of the LEON3

processor to add hardware support for appending 4 bits

tags to the registers/caches, taint check registers and taint

propagation logic. Besides, we extended the Advanced mi-

crocontroller bus architecture (AMBA) bus to be compat-

ible with our tagged storage units, and provided the taint

check process with a new exception generation mecha-

nism. The tag marking, propagation and checking func-

tions are added to the AMBA bus, Arithmetic-logic unit

(ALU) and the pipeline’s exception stage, respectively.

When the external data transferred on the AMBA bus, it

is labeled by the tag, and tag [0] is set to 1.

Fig.2 also shows the hardware architecture of mem-

ory monitor. The monitor module intercepts instructions

on the data path between cache and IU unit and ob-

tains security information needed for the monitoring from

the pipeline. The memory monitor module includes three

parts: stack protection module, heap protection module

and global data protection module. The address decoder

transmits target addresses of memory operation instruc-

tions to the corresponding hardware protection module

according to the data space the address belongs to. We

can see that the whole memory monitor module can oper-

ate in parallel with the processor completely, which makes

the performance penalty to the overall system very small.

IV. Security Evaluation

To verify the effectiveness and quantify the perfor-

mance overhead of our proposal defending against ma-

licious software attacks, we have used two types of ma-

licious attacks respectively in the verification process,

which are stack overflow attack and heap overflow attack.

To make the two methods compatible with each other

and achieve complementary advantages of both of these

two methods, we have reduced the security level of infor-

mation flow tracking. Some missed attacks can pass to

memory monitoring module to detect, which not only re-

duces the false positive rate of information flow tracking,

but also does not increase the false negative rate of the

whole system. Verification results show that the combi-

nation of information flow monitoring and memory mon-

itoring can effectively defend against a variety of attacks

at run time.

1. Stack overflow attack

The buffer overflow attack model shown in Fig.3 has

been considered in one of our experimental setup.

https://sina-pub.ir


804 Chinese Journal of Electronics 2016

Fig. 2. Diagram of the hardware of our design

Fig. 3. Diagram of buffer overflow attack model

External data can be transmitted into the system

through various channels, such as UART, GPIO, key-

board and ethernet. For our experimental setup, the taint

tracking strategy mainly considers external data from the

UART. The main segment of the attack code is shown in

Fig.4.

Now we give an analysis of how information flow track-

ing and memory monitoring detect this attack. For infor-

mation flow tracking, this attack modifies the return ad-

dress through the buffer overflow. The taint check logic

monitors the data flows when the processor is operating.

After the return addresses are covered by the tainted data

during the attacks, an exception is generated.

Memory monitoring can also easily detect above stack

overflow attacks. There is a virtual instruction execution

unit in the memory monitoring module. By inspecting the

bound of stack space of a program, memory monitoring

module can easily detect that the return address of func-

tion() has been covered illegally, and then detect the stack

overflow attack.

Fig. 4. The main segment of stack overflow attack code

2. Heap overflow attack

Heap overflow attack is one of the common attacks,

https://sina-pub.ir


The Design and Implementation of Embedded Security CPU Based on Multi-strategy 805

but also belongs to buffer overflow attacks. In our ex-

periments, we also used a heap overflow attack code to

carry out the attack test on the experimental platform

we built. The major difference is that this malicious code

is not input from the external interface, but has been writ-

ten in the Synchronous dynamic random access memory

(SDRAM) of the system before the system is running.

The code of heap overflow attack shown in Fig.5 be-

low has been simplified for better presentation. We re-

tained the key code of this type of attack as follows. The

main() function dynamically allocate two heap blocks,

the starting address are buf1 and buf2. The distance

between buf 1 and buf 2 is BUFFER DISTANCE. First,

it initializes buf 2 by calling the memset function, and

assigning “A” to buf 2. Second, initializes buf 1 by call-

ing the memset function, but the length of assignment is

BUFFER DISTANCE+OVERSIZE which is longer than

that of buf 1. Because memset function does not check the

boundary of buf 1 and buf 2, it caused a heap overflow and

covered the data of buf 2.

Fig. 5. The code of heap overflow attack

The experimental results show our multi-strategy can

easily detect the heap overflow attack. The difference is

that only the memory monitoring module can detect the

malicious attacks, but not the information flow monitor-

ing.

Information flow tracking does not analyze the secu-

rity of programs or data coming from external interface. It

can defend against malicious attacks on the premise that

it needs to mark the external data as untrusted ones when

transmitted from any port connected to the CPU. Since

the malicious code of the heap overflow attack is written

to the SDRAM before the system is running, the infor-

mation flow tracking policy does not do any tag marking,

so it cannot detect the attack.

In the memory monitoring module, it saves function

malloc’s input parameters (the buffer length) and return

value (the buffer start address) in buffer bound informa-

tion storage unit. Then it monitors the target address of

every memory operation. If a target address is among the

heap data space, it matches the base address of the target

address with the start address saved in the buffer bound

information unit until it finds the buffer ’s length. Then

it compares the length with the offset value of the target

address. When the length is less than the offset value, a

warning is generated. In this case, the length of buf 1 is

less than the offset BUFFER DISTANCE+OVERSIZE,

and then an alarm signal is asserted by memory monitor-

ing module.

From the above experimental results, we can see that

our multi-strategy, a combination of the information flow

monitoring and memory monitoring, can defend various

malicious software attacks. Users can properly lower the

configuration requirements of the TCR register in infor-

mation flow tracking to reduce the false positives rate of a

single information flow control strategy. Then, the threats

missed by information flow tracking can be detected by

memory monitoring module. Thus, our proposal formed

a security strategy of double protection of embedded sys-

tems.

V. Hardware Overhead

To evaluate the performance of our design, we mapped

the entire system to an FPGA prototyping platform with

a Xilinx Virtex-5 FPGA (XC5VFX70T-FFG1136). We

have performed functional verification of the running pro-

totype.

Table 2 shows the comparison of utilization ratios of

different types of FPGA resources before and after the

integration of our multi-strategy. We can find that the

area overhead is almost negligible. For timing overhead,

the post-place & route timing report show that our multi-

strategy integration has also negligible impact on the crit-

ical path delay. The above results indicate that our pro-

Table 2. Research subjects

Leon3 with Leon3

security strategy

Number of slice registers 10% 10%

Number of slice LUTs 21% 21%

Number used as logic 22% 21%

Number used as memory 1% 1%

Number of route-thrus 1% 1%

Number of occupied slices 40% 39%

Number with an unused flip-flop 57% 57%

Number with an unused LUT 15% 15%

Number of fully used LUT-FF pairs 26% 26%

Number of bonded 37% 37%

Number of block RAM/FIFO 12% 12%

Number of BUFG/BUFGCTRLs 32% 31%

Number of BSCANs 50% 50%

Number of DCM-ADVs 41% 41%

Number of DSP48Es 3% 3%

https://sina-pub.ir


806 Chinese Journal of Electronics 2016

posed multi-strategy is an ideal solution for embedded

processors with very low hardware cost and almost no

performance penalty.

VI. Conclusions

We proposed a novel security monitoring strategy of

embedded processors in this article. It integrates infor-

mation flow tracking and memory monitoring into a com-

bined solution, which has been proved to be more effective

and can detect more malicious attacks than single solu-

tions. In addition, the hardware cost and the performance

penalty of our design are both very small.

In the future work, we will try to integrate more se-

curity mechanism based on this work, and will first in-

vestigate the main memory data integrity check of em-

bedded system. Memory data integrity check is a very ef-

fective way defending against spoofing attacks, relocation

attacks and replay attacks[15]. We hope that the method

of memory data integrity checking can be also integrated

into our security strategy. Next, we will try to achieve the

combination of information flow control, memory mon-

itoring and data integrity checking, and build a multi-

dimensional security defense system for embedded system.

References

[1] Y. Jin, “Embedded system security in smart consumer electron-
ics”, Proc. of the 4th International Workshop on Trustworthy

Embedded Devices, pp.59–59, 2014.
[2] S. Chen, J. Xu, N. Nakka, et al., “Defeating memory corrup-

tion attacks via pointer taintedness detection”, Proc. of the In-

ternational Conference on Dependable Systems and Networks
(DSN), pp.378–387, 2005.

[3] M. Ozsoy, D. Ponomarev, N.A. Ghazaleh, et al., “SIFT: Low-
complexity energy-efficient information flow tracking on SMT

processors”, IEEE Transactions on Computers, Vol.63, No.2,

pp.484–496, 2014.
[4] M.Dalton, H. Kannan and C. Kozyrakis, “Raksha: A flexible in-

formation flow architecture for software security”, Proc. of 34th
International Symposium on Computer Architecture, pp.482–

493, 2007.

[5] N. Vachharajani, M.J. Bridges, J. Chang, et al., “RIFLE: An
architectural framework for user-centric information-flow secu-

rity”, Proc. of 37th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pp.243–254, 2004.

[6] V.P. Kemerlis, G. Portokalidis, K. Jee, et al., “Libdft: Practical

dynamic data flow tracking for commodity systems”, Proc. of
8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution

Environments, pp.121–132, 2012.
[7] G. Venkataramani, I. Doudalis, Y. Solihin, et al., “FlexiTaint:

A programmable accelerator for dynamic taint propagation”,

Proc. of ACM/IEEE Design Automation Conference, pp.173–
184, 2008.

[8] Z. Liu, X.S. Zhang and X.D. Li, “Proactive vulnerability finding
via information flow tracking”, Proc. of the International Con-

ference on Multimedia Information Networking and Security,

pp.481–485, 2010.
[9] M. Dalton, H. Kannan and C. Kozyrakis, “Real-world buffer

overflow protection for user and kernel space”, Proc. of the In-
ternational Conference on Dependable Systems and Networks

(DSN), pp.395–410, 2008.

[10] C. Cowan, C. Pu, D. Maier, et al., “Stackguard: Automatic
adaptive detection and prevention of buffer-overflow attacks”,

Proc. of the USENIX Security Symposium, pp.63–78, 1998.

[11] Zili Shao and Edwin Sha, “Defending embedded systems against
buffer overflow via hardware/software”, Proc. of the Inter-

national Conference on Information Technology: Coding and
Computing, pp.352–361, 2004.

[12] D. Li, Z. Liu and Y. Zhao, “HeapDefender: A mechanism of

defending embedded systems against heap overflow via hard-
ware”, Ubiquitous Intelligence and Computing and 9th Inter-

national Conference on Autonomic and Trusted Computing
(UIC/ATC), pp.851–856, 2012.

[13] D. Li, Z. Lu, X. Zou, et al., “PUFKEY: A high-security

and high-throughput hardware true random number generator
for sensor networks”, Sensors, Vol.15, No.10, pp.26251–26266,

2015.
[14] SPARC Inc, “The SPARC Architecture Manual (Version 8)”,

http://www.gaisler.com, 2016-1-22.

[15] Reouven Elbaz, David Champagne, Catherine Gebotys, et al.,
“Hardware mechanisms for memory authentication: A survey

of existing techniques and engines”, Transactions on Com-
putational Science IV, Lecture Notes in Computer Science,

Vol.5430, pp.1–22, 2009.

LI Dongfang received the Ph.D. de-

gree from Huazhong University of Science

and Technology. Currently, he is working at
Beijing Institute of Computer Technology

and Application. His main research areas

include FPGA security and VLSI design.
(Email: lidongfang@hust.edu.cn)

ZHAN Xin received the M.S. de-
gree at Huazhong University of Science and

Technology. Currently, he is pursuing the
Ph.D. degree at Department of Electrical

and Computer Engineering, Texas A&M

University. His research focuses on em-
bedded system security and EDA. (Email:

zhanxin0319@126.com)

TONG Qiaoling received the Ph.D.

degree from Huazhong University of Sci-
ence and Technology. Currently, he is a

an associate professor at School of Opti-
cal and Electronic Information, Huazhong

University of Science and Technology. His

main research areas include VLSI design
and intelligence computation. (Email: ql-

tong@gmail.com)

ZOU Xuecheng received the Ph.D.

degree from Huazhong University of Sci-
ence and Technology. Currently, he is a pro-

fessor at School of Optical and Electronic
Information, Huazhong University of Sci-

ence and Technology. His main research ar-

eas include VLSI design and the Internet of
things. (Email: estxczou@gmail.com)

LIU Zhenglin (corresponding au-

thor) received the Ph.D. degree from
Huazhong University of Science and Tech-

nology. Currently, he is a professor at

School of Optical and Electronic Informa-
tion, Huazhong University of Science and

Technology. His main research areas in-
clude embedded system security and VLSI

design. (Email: liuzhenglin@hust.edu.cn)

https://sina-pub.ir

