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Abstract-An analytical investigation is presented of the influence of radiative heat transfer on the complex 

heat exchange problem involving How of an optically active (radiating) gas inside a tube of diffuse 

grey properties. The method used is based on Hottel’s formulation of zone division, and involves the 

transformation-zone approach, where radiation gas emission is replaced with an equivalent surface 

emission. Separable-kernel and surface transformation techniques give a set of non-linear differential 

equations treated by the Runge-Kutta method with Hamming modification. The solutions are governed 

by several independent parameters such as the wall and radiation gas emissivities, inlet and exit gas 

temperatures, length diameter ratio of the tube, uniform and non-uniform heat flux and variableconvective 

heat transfer coefficient at the inner surface. The results apply both to heating and cooling situations. 

INTRODUCTION 

THE THERMAL design and analysis of energy con- 

version systems and devices such as furnaces, com- 

bustion chambers, combustors, fluidized beds, and 

open cycle coal- and natural-gas-fires MHD must 

often take account of the effects of thermal radiation. 

Radiation is also a significant mode of heat transfer 

in many high temperature technological areas such as 

heating and annealing furnaces, thermal control of 

spacecraft, nuclear reactor safety and fire spread. 

In some instances, the radiation will impose an 

additional heat load on a part which is to be kept 

cool, and hence this exchange must be estimated when 

the cooling requirements are computed. In other 

cases, the radiation will cause a region operating at a 

high temperature to have it reduced. 

Heat transfer by forced convection to a gas flowing 

in a tube has received detailed study in the literature, 

but little consideration has been given to the added 

effects caused when thermal radiation (in par- 

ticipating media) is also present. The situation con- 

sidered here is the heat exchange in a circular tube 

with a uniform or non-uniform heat flux supplied 

along the wall, and there is a constant or variable 

convective heat transfer coefficient at the inner 

surface. 

The purpose of this paper is to examine the inter- 

action of radiative and convective transfers for flow 

of a radiation gas in a circular tube. The present paper 

also provides the additional analysis necessary to 

extend refs. [l-3] to include a radiative contribution 

of a radiation gas. The proposed method which 

includes the influence of gas emission is based on the 

zone division approach first formulated by Hottel [4, 

51 and developed by Siegel and Perlmutter [l, 2, 

61. In this, the non-isothermal gas and surface are 

divided into infinitely small isothermal elements. Also, 

it involves the transformation-zone technique. where 

the emission of the gas body is replaced with an equi- 

valent surfdce emission [I, 7-l 01. 

Previously, the analysis presented here has been 

applied to heated tubes only, [8, 91, whereas, in fact, 

it is equally valid for cooled tubes. This is made 

explicit in the final derived equation where the upper 

and lower signs refer to heated and cooled conditions, 

respectively. Also, the analysis is a development of 

that presented by Siegel and Perlmutter [2] and Perl- 

mutter and Siegel [I]. We have deliberately used the 

same notation and derivation to enable the reader to 

appreciate the additional features of this work. 

ANALYSIS 

The system to be analysed is shown schematically 

in Fig. I (the tube system treated here is similar to 

that studied by Siegel and Perlmutter [I, 21). A radi- 

ative gas at a specified inlet temperature T,., flows into 

the tube and is heated to an average exit temperature 

Tg,,. A uniform or non-uniform heat flux q(X) is 

supplied to the tube wall by external means, and the 

outside surface of the tube is assumed to be insulated. 

Each end of the tube is exposed to an outside environ- 

ment or reservoir at specified temperatures, T,,, and 

r,,, at the inlet and exit of the tubes respectively. The 

inside of the tube wall is a diffuse grey surface with 

an emissivity E. The Planck mean volume absorption 

coefficient x is constant and the optical thickness 

K << I. It is assumed that there is no axial conduction 

in the tube wall or in the radiation gas and that the 

convection heat transfer coefficient h(X) is non- 

uniform throughout the tube. 
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NOMENCLATURE 

area of relation of absorptivity and 

apparent emissivity of radiation gas 

apparent absorptivity of radiation gas 

surface 

dimensionless constant of parabolic 

distribution from equation (23) 

constant of parabolic distribution 

specific heat of fluid 

tube diameter 

substitute emissivity factor 

emissive power, emissivity per unit area 

geometric configuration factor for 

radiation from an element on the tube 

wall to the circular opening at the end of 

the tube or the apparent surface of the 

radiation gas body 

dimensionless length-dependent heat- 

transfer coefficient 

H. H,, Hz dimensionless constants from 

equation (22) 

/z(x) convective length-dependent heat- 

transfer coefficient 

h, It,, hz constants in equation (3) 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K 

k 

energy of flowing gas 

geometric configuration factor between 

elements on the inside of the tube wall 

dimensionless radiation gas absorption 

coefficient. x/I 

length of tube 

dimensionless length, L/D 

energy rate, energy per unit time 

heat added per unit area at tube wall 

(length-dependent) 

constant of parabolic distribution, 

energy flux 

total incoming radiation per unit area to 

a surface element 

total outgoing radiation per unit area 

from a surface element 

h4 dimensionless constant of parabolic 

distribution from equation (23) 

m constant of parabolic distribution 

N radiation heat-transfer coefficient 

R dimcnsionlcss radiation heat-transfer 

coefficient 

S(x) length-dependent Stanton number 

S, S,, S2 dimensionless constants from 

equation (14) 

T temperature 

t dimensionless temperature 

%l mean radiation gas velocity 

x axial length coordinate measured from 

tube entrance 

x dimensionless coordinate, X/D 

Y dummy integration variable. 

Greek symbols 

x absorption coefficient 

5 dimensionless variable, Y/D 

6 emissivity of surface 

c,,, d(sp,,) apparent emissivity of radiation 

gas body surface 

E, effective emissivity factor 

P density of radiation gas 

(T Stefan-Boltzmann constant 

t transmissivity. 

Subscripts 

b blackbody 

e exit end of tube 

g gas 

i inlet end of tube (except in symbol q: and 

dtsp.,)) 

P apparent surface of radiation gas body 

r reservoir 

W inside surface of tube wall. 

Energy balance 

The analytical relation between temperatures and 

heat fluxes can be obtained from an energy balance 

for the elementary surface dA, and gas volume dV,. 

According to the net radiation method of Poljak [6], 

and other workers [2, 31 the energy balance for an 

elementary surface dAx a distance X from the tube 

inlet equals 

the heat flowing by convection from the wall to gas. 

(T,, - T,) is the local difference between the wall tem- 

perature and bulk gas temperature. The imposed heat 

flux q(X) and convective heat transfer coefficient h(X) 

are assumed to be dependent on axial position 

q(X) = q+mX+cX’ (2) 

and 

q,*(X) +q(W = q,(X) +W’)]T,(X) - T&01. (1) /z(X) = h+h,X+hZX* (3) 

The terms on the left are, respectively, the total that is, parabolic distributions. 

incoming radiation and the flux due to wall heating. The radiation terms are now considered in detail. 

On the right-hand side, the respective terms are the q,,(X) is composed both of direct emission wTt, 

radiative heat flux leaving the surface element and and reflected radiation which is (I -E) times the total 
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(bf 

Qh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ, Qh Q* 

FIG. I. Circular tube geometry. (a) Energy quantities incident upon and leaving infinitesjm~l surface dA, 
and (b) energy quantities for gaseous volume element dV, for heated tube and (c) and (d) for cooled tube, 

respectively. 

incoming radiation [2, 61 

q,(X) = EoT:+(l -e)yfqX). (4) 

The total incoming radiative heat flux q*(X) is com- 

posed of three types of terms, the radiation coming 

from the reservoirs at the ends of the tube, the radi- 

ation from the other elements on the internal tube 

surface, and the radiation arriving from elementary 

gas bodies in the form of cylindrical slices (Fig. 1) [3, 

81. These quantities can be written as 

@fX) = aT;f,z(X)f;(X)+aT,q,?(L-X)~(L-X) 

+ (it,( Y)z(X- Y)KfA’-- Y) d Y 

s 1. 

+ ,~ q,,(w(Y-X)wY--X)dY 

i 

A 

+ es.h d&,.,.)+X- Y)F(X- Y) 
0 

s f. + e,,hd(?+J)?( Y-X)F( Y-x). (5) 
.\ 

In equation (5) the functions F(Z) and K(Z) are the 

typical geometrical configuration factors which occur 

in the system under consideration and z(Z) is the gas 

transmissivity of thickness Z [I, 21. The quantity 

d(E,,,) is the apparent emissivity of the real surface of 

the gas body. This apparent emissivity is given by [3, 

81 

d(c,,) = ISrDdX = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.5kdX. ta 

By substituting equation (5) into equation (I) and 

equation (4) into equation (1). one obtains two 

relations which include y,,, T, and Tz as a function of 

the dinlensionl~ss independent variable s 13, 8, IO] 

+ q,(Ms- i)M.u-i) di 

i + (/,,fi)z(i-.~)K(i-_s)di 

s I 

+ ~~.hd(i-:p.;)~(iY-_~)f;fi-.~) (7) 
\ 
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and 
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1 --c 
y,,(X) = 7 jk(.u)[T,(s)- T&u)]-q(s)) +oT,:(.\-). 

(8) 

In order to solve the set of equations (7) and (8). an 

additional heat balance is written for the flowing radi- 

ation gas. Since the gas is non-transparent to 

radiation, heat is transferred to the wall both by con- 

vection Q,, and radiation Qr. For a cylindrical volume 

clement of length dX and diameter D, the heat trans- 

ferred is [3. 7. 8, 1 I] 

Q,, = II(.O[T,(,~)- ~,(X)]~DdX (9) 

and 

Qr =;~~,~11141:iii-SliiliDd~ 

(10) 

where 

(11) 

E,, is the apparent emissivity of an incremental length 

of grey gas which is infinitely small. This contrasts 

with d(a,,), which is the apparent cmissivity of the 

real gas body surface. given by equation (6). 

Equation (IO) is the same as equation (8: IO) of 

Hottel and Sarofim (pp. 301&302 of ref. [I I]). 

However. that equation holds for a grcy gas sur- 

rounded by a single sourcesink surface. where both 

gas and surface are at uniform tempcraturc. This will 

lead to an error where the tempcraturcs vary, and. in 

fact, we only use the equation on a differential-length 

basis. However, the overall energy balance (Ah[%] in 

Tables l-8) includes the effect of all considerations 

such as the above. and may be regarded as quan- 

titatively satisfactory. 

The quantity (Q,,+Qr) is equal to the net heat 

removed from the volume clement by the flowing radi- 

ation gas which is 

I,-I, =AI= -u,,, 
71DX dT,(W 

m~i ~dX. 4- pc’P d(X) (12) 

The mean fluid velocity LI,,, is assumed constant so that 

kinetic energy changes of the gas are neglected. These 

three quantities are cquatcd and the result is 

rearranged into the form [7, IO] 

q$;’ = [S+S,s+S~.Y~][T~(.Y)-T~(.Y)] 

where 

M. W. COLLINS 

Equation (I 3) is the third. necessary relation between 

c/~,, T, and T,. As two of them. T,, and r,. describe 

the physical aspect of the phenomenon, the following 

transformations are carried out according to their 

elimination [ 1. 21. 

Trmnsfi,rmation to (1 clQj&entirrl ryuution 

According to the method presented in refs. [l, 21, 

the integral in equation (8) can bc reduced to a 

differential equation by the use of exponential 

approximations for the geometric kernel K, con- 

figuration factor F and transmissivity T. As shown in 

refs. [l-3], the functions K, F. 7 could be rcpresentcd 

quite well by 

K(s) z e ”  (16) 

F(.r) z !e 2X (17) 

5(.x) = c i’ . (18) 

By substituting (according to refs. [l-3]) the 

representation given by equations (16))( 18) and by 

double differentiation of equations (7) and (8) 

with respect to s’, and also by single differentiation of 

equation (13). one obtains the following set of non- 

linear, dimensionless differential equations : 

dt, 

dx 
= f4E 

F 4ME.x T 4CE.u’  k 
2c 

c 

+(t,-rf,) 4E(H+H,r+Hz.u’) 
1 

2H2 
_ 

Cm+ 

, 

+ (H~H~~~+!q,, +,‘$+.I 

- 1, (H+ H,.Y+ Hz.u’)(S+S,.u+S,.r’ ) 

+t: 
2(H, + Hxr) 

k(2+/0+- t=l-RA 
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-tt 
{ 
W+&.,- i W+H,.Y+H~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x (S+S,.r+S$+4Rt,‘)R + yL;= R 

and 
(19) 

dt, 
ds = (S+S,.u+Sz.\-‘)(t,~t,)+R(At,:-TV) (20) 

where 

I 4 
; E_ k(2+k)(l-c)+(2+k)‘s 

48 
_____ (21) 

; H,= 

R=N ‘! 0 
14 

WlD CD’ 
: M= 

0 Y 
; C = -; E,,< = 0.15k. 

Y 
(23)f 

(22) 
2 

(2+k)7e 

,lfk), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 
I --I-: 1’) 

‘. c  4 (26) 

The procedure which yields boundary conditions 

(24)-(26) is presented in refs. [l-3]. However, the 

solution procedure involved assuming tW(0) and cal- 

culating the first derivative with respect to .Y at the 

wall. The boundary condition for .Y = I is used for 

verification of the overall calculation which comes to 

an end when the condition is satisfied. 

The terms involving t,,, and t,,, have thus been ehm- 

inated, but they will appear in the boundary con- 

ditions. The two differential equations (19) and (20) 

are solved simultaneously by a numerical procedure. 

but first the boundary conditions have to be specified. 

Boutdur~* c.otzditiotu 

Equation (20) is a first order equation requiring 

only one boundary condition. This condition is that 

at the inlet of the tube the gas temperature has a 

spccificd value t,, 

Orwd hat hu/mwe 

In research practice, despite the formal satisfaction 

of boundary conditions, a numerical solution also 

requires the overall thermal balance of the system to 

be correct [I, 21. According to refs. [l-3, 81, the heat 

t, = t,., at .Y = 0. 
balance takes the dimensionless form 

(24) 

Equation (19) is a second order equation and requires 

two boundary conditions. These are given by the use 

of the approximations for configuration factors and 

trdnsmissivity. 

At s = 0 this gives 

dt, I 

d\- \_,,= [H+4ct:(O)] 

HI 
S+2+k- H [tw(0)-t,,,] 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+HR[At:(O)- t;.,] (25) 

and for .Y = I 

I --E t‘J e (2thll 

i:(2++~j[I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+k +C ‘z’h” l+ r ”  ~ 2 + I 

= i~[H+H,I+H211][t~(I)-t~(l)l 

tf:,, arises from the identity (from equation (7)) of 

d(E,:)F(B-s) = l.SkdsF(~-x) = 1.5kdr~(<-x)/2 = 0.75,4 

ds K(<--s) = E,,dx K(c-x). 
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x (t, - tJ +tz 1 e”+“” du 

I I 

+M (2+k) ~ (2-+k )’ 

I 
+ (2-e 

,2+h,, 

I’ 

+’ 

21 2 

(2+k) (2+k)’ + (2+k)’ 

x(t -t )+t4 [em”+““ u g \I 
I 

+em”+k”’ “1 &. 

f ; +., ti [e 
(IthI> te ~t~+hWt)]d_ufcp 

(27) 

where 

I’ 21 4 

- (2/k) + (2+k)’ (2+k)’ 1 
I’  21 4 ~ 

(2+k) + (2+k)I + (2+k)’ 

(28) 
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From the preceding set of non-linear differential equa- 

tions, together with the boundary conditions and the 

overall heat balance. it is necessary first to dctcrmine 

the independent parameters : H ; H, ; H, : S ; S, ; S1 : 

i:: ‘4; k: R: I: t r,,; t,,, and f,,. Then it requires an 

approximation of the value for t,(O) and the cvalu- 

ation of d/,,;d.\- for .\- = 0 from equation (25). This 

calculation enables a further solution of equations 

(19) and (20) to be made, a procedure described in 

detail in refs. [ ll3]. 

NUMERICAL RESULTS 

The set of non-linear diffcrcntial equations (19) and 

(20) was solved by the Rungc-Kutta method with the 

Hamming modification. USC being made of the IBM 

standard library. The calculations wcrc performed 

on an IBM PC computer. In refs. [I, 21 the overall 

problem was treated by various calculations. The 

inside of the tube wall was assumed to be a black or 

diffuse grey surface and the gas flowing through the 

tube was transparent to radiation. The convective 

heat-transfer coefficient between the tube wall and the 

gas was assumed constant --for simplicity the heat 

addition at the tube wall was specified to be uniform. 

The solutions are governed by seven independent par- 

amcters such as the wall emissivity, inlet gas tem- 

pcrature. inlet and exit reservoir temperatures and 

Icngthdiameter ratio of the tube. Numerical cx- 

amplcs are given to show the influence of thcsc par- 

ameters and to demonstrate how radiation alters the 

wall temperature distribution that would exist for con- 

vection alone. In this paper. therefore, we concentrate 

on certain specific results. These illustrate the influ- 

ence of (i) the radiative properties of the radiation 

gas and wall. (ii) the non-uniformity of a heat flux 

imposed at the wall and (iii) the non-uniformity of a 

convection heat-transfer coefhcicnt on the wall, t,, 

and gas, t,. temperature distribution. All the above 

rclatcs to heated tubes. As has been stated, the analysis 

is equally valid for cooled tubes, and results for these 

arc now considered. However. only illustrative cx- 

amples arc given. Also. in Tables IL8 is an expression 

of the accuracy of the method Ah[%]. It has already 

been mentioned that the outlet boundary condition 

given by equation (26) is a termination criterion. For 

this, a precision parameter was defined as being the 

ratio ol’thc difference between the left- and right-hand 

sides of equation (26) divided by the right-hand side. 

For this study. the parameter was set at 0.01%. A 

similar Ah was defined for the overall energy balance. 

equation (27). the values for the various calculation 

runs being in Tables I -8. These values arc partly a 

rcfcction of the paramctcr for equation (26). but 

mainly an expression of the overall accuracy of the 

method. In future work. we intend to study the relative 

effects of the contributing factors to the error in qucs- 

tion. Further, it would be feasible to compare such 

considerations with those in other methods, for 

instance the Monte-Carlo. or heat flux, approaches. 

Numerical calculations have been obtained for a 

heated short tube having a length-diameter ratio of 

5. The values of the parameters were chosen to show 

the behaviour of the system for various combinations 

of the independent parameters. For all of the 

solutions, the inlet and exit rcscrvoir temperatures 

were set equal, rcspcctivcly. to the inlet and exit gas 

temperatures. 

The effect of radiation gas absorptivity (in dimen- 

sionless form) on the wall and in the radiation gas 

temperature distribution is shown in Figs. 2(a) and (b) 

for uniform heat flux and two chosen wall emissivities 

E = I.0 and 0.01. These graphs give new data, then, 

compared with Siegel and Perlmuttcr [2] who assumed 

the gas to be transparent. In Fig. 2(a), curves arc given 

for different values of dimensionless gas absorptivity 

k between 0.0 and 0.5. When the gas absorptivity is 

increased. the radiant heat transfer becomes more 

efficient for I: = 1.0. The tcmperaturc distribution 

along the inner surface of the wall was found to be 

quite insensitive to this range of the k-parameter for 

i: = 0.01. For comparison. the curve for pure con- 

vection and uniform hcut flux is included. The radi- 

ation loss to the reservoirs causes the wall temperature 

to drop near the ends of the tube. As expected, when 

8 decreases and k increases, a greater portion of the 

heat is transferred to the radiation gas. This is also 

shown in Fig. 2(b) where the radiation gas tcm- 

pcrature variation approaches that of pure convection 

as k becomes large and is above the pure convection 

line (fork = 0.2-0.5) if8 = 0.01, Tables I and 2 shows 

the set of dimensionless numbers and physical quan- 

titics which were used in the calculation. The initial 

and final wall and radiation gas temperatures. both 

calculated numerically. arc also presented there. In 

Fig. 2(c). the solutions in Fig. 2(a) are plotted in terms 

of the radiation correction factor H,‘H,,,,, which was 

discussed in refs. [I. 21. The present analysis has pre- 

dicted the f,, and t, which would be measured, and a 

local experimental heat-transfer coefficient can then 

be defined as [IL31 

I?,,,, = rl 
T,, - T, 

or H_,, = -! 
t, - t, 

(29) 

The Hcrp will result from the combined cffccts of both 

radiation and convection. The dimensionless heat- 

transfer coefficient for convection alone is simply H 

so that we can form the ratio 

H/H,,, = HCt,- t& (30) 

The ratio is really a correction factor, and if it is used 

as a multiplier on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc.uprrinzenta/ results, it will 

correct for the radiation effect on H,,,,. The result will 

be the heat-transfer coefficient for convection alone. 

For I= 5, there arc large radiation losses so that 

the measured heat-transfer coefficient would be much 

higher than the convection coefficient. In this case the 

https://sina-pub.ir


Radiant and convective heat transfer 3639 

Pure convection 

(a) 

2.90 

2.70 

2.46 

Pure convection 

J 

2.44 

0 1 2 3 4 5 

2.42 
Cc) Pure convection 

1,0- ---------- 

2.40 k 
E=o.ol k 

,* 0 0.8 - 0 

2.00 

E=l.O k 

1.80 

1.70 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 2 3 4 5 0 1 2 3 4 5 

x x 

FIG. 2. (a) Effect of dimensionless absorptivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk on temperature distribution in the tube wall. y(x) = const ; 

E = I.0 and 0.01. (b) Effect of dimensionless absorptivity k on temperature distribution in the gas. 

y(x) = const ; c = I .O and 0.01. (c) Effect of dimensionless absorptivity k and wall emissivity E on the ratio 

of heat transfer for pure convection to that for combined convection and radiation. q(x) = const. 

Table 1. Effect on predictions of varying dimensionless absorptivity k, for E = 1.0 (heated tube) 

z = 1.0 I = 5 H = 0.8 S = 0.01 I,,, = t,, = I.5 A = 0.85 

k 0.0 0.1 0.2 0.3 0.4 0.5 
R 0.0 3.12 x lOmJ 6.25 x 10mJ 9.373 x 1om4 2.25 x IO-” I.563 x IO-’ 

8,’ 0.0 0.025 0.05 0.075 0.10 0.125 
i:p.. 0.0 0.075 0.15 0.225 0.30 0.375 
E I.0 1.1025 I.21 1.3225 1.44 I .5625 
L(O) = I,., I .7399 I .7065 I .6894 1.6791 I .6722 I .6674 

L,< = L(l) I .7525 I .7237 I.7105 1.7039 I .7006 I .6992 
I,,, = t,., 1.5216 I .5266 I .5306 1.5344 I .5380 1.5416 
Ah [%] 0.00 0.041 0.066 0.10 0.30 0.52 

Table 2. Effect on predictions of varying dimensionless absorptivity k, for E = 0.01 (heated tube) 

I: = 0.01 I = 5 H = 0.8 S = 0.01 l,,, = l,,, = I.5 A = 0.85 

k 0.0 0.1 0.2 0.3 0.4 0.5 
R 0.0 1.0x IO 4 I .4 x IO_” 1.5x 1om4 I .58 x 10 m4 I .62 x IO-’ 
E:p 0.0 0.025 0.05 0.075 0.10 0.125 
Ep.5 0.0 0.075 0.15 0.225 0.30 0.375 
E I .o 6.30 12.10 18.40 25.20 32.5 
L(0) = L 2.4093 2.4085 2.4082 2.4080 2.4079 2.4079 
I,, = r,(l) 2.4401 2.4478 2.4510 2.4518 2.4525 2.4529 
I,., = 1, c I .5459 1.5581 1.5629 1.5641 I.5651 1.5656 
Ah [%] 0.0 0.57 0.85 0.97 I .09 1.18 
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0.5 1 I I I I I 
0 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3 4 5 

x 

Fm. 3. The heat Il!~x L/(.Y)II~ distributions along the tube wall. 

set of correction factors is much less than unity. In 

the central region of the short tube for I: = 1.0 (Fig. 

2(c)) about 25% of the heat input is transferred by 

convection (c) and 75% by radiation (a) and (b) where 

15% is the effect of the energy transfer from the radi- 

ation gas (b). However. for I= 5 and c = 0.01, radi- 

ation accounts for only 25% of the energy transfer and 

heat exchange from the radiation gas can be neglected. 

Even for an emissivity as low as 0.01, the correction 

factor is quite large and the effect of radiation cannot 

be ignored in comparison with the convection effects 

[2, 31. 

Figure 3 illustrates the heat flux distributions along 

the tube wall. Numerical calculations show the correct 

and significant influence of dimensionless heat flux 

distribution on the temperature distribution t, and 

t,. It is also demonstrated that there is substantial 

influence of heat flux distribution for a low value of 

wall cmissivity. 

The results for different values of heat flux dis- 

tribution q(.r)/q are shown in Figs. 4(a) and (b) for 

emissivities I: = I and 0.01 and dimensionless radi- 

ation gas absorptivity k = 0.1 (data from Table 3). 

The run numbers l-4 are defined with reference to a 

comprehensive set of heat flux distributions accom- 

modated within equation (2) and given by 

I. q(.u),!q = I 

2. c/,(.u)k~/ = I + 0.2.~ - 0.04.~’ 

3. q(x)/q = I -0.2.r+O.O4.u’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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FICG. 4. (a) Erect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof dimensionless (non-uniform) heat fluxes 
q(s)/q on the tube wall temperature distribution. k = 0.1 ; 
c = 1 .O and 0.01. (b) EiYect of dimensionless (non-uniform) 
heat flux C/(.X)/~ on the gas temperature distribution. k = 0. I ; 

(31) i: = I .U and U.UI 4. q(s)/q = I +0.2s. 

Table 3. Eff‘ect on predictions of varying dimensionless heat flux, for E = I .O and 0.01 (heated tube) 

I = 5 H = 0.8 .S = 0.01 f,,, = t,, = 1.5 A = 0.85 k = 0.1 c,, = 0.025 tip\ = 0.075 

t: = I.0 E= I.1025 R = 3.12x 10m4 I; = 0.01 E= 6.30 R = 1.0~ IO ' 

I 2 3 4 I 2 3 4 

1% (0) = ~,.I I .7065 I .7239 I .68X9 I .7390 2.4085 2.4 IO2 2.4070 2.4121 
1% L1 = ~\\(O I .7237 1.7431 I .7038 I .8484 2.4478 2.4556 2.4401 3.0750 
I, ,c = 1S.C I .5266 I .5305 I .5225 I .5372 1.5581 I .5673 I .5487 I .5854 
Ah [%I 0.141 0.26 0.036 0.314 0.57 0.635 0.517 0.82 
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FIG. 5. Stanton number S(r) distributions along the inner 

surface of the wall. 

In a similar manner to heat flux, a set of alternative 

distributions for h(.u), accommodated by equation 

(3), result in the following run definitions for the 

dimensionless convective parameters S(.u) and H(.u) : 

1. S(x) = s = 0.01 H(.u) = H = 0.8 

7. S(s) = 0.01-0.00~5.~+0.0005.~~ 

N(s) = 0.8-ox\-+0.04.x’ 

3. S(.r) = O.Ol-0.0058.~+0.0008r’* 

H(s) = 0.8-0.464.~+0.064.\-’ 

2a. S(X) = 0.01+0.0035.P-0.0005.~’ 

N(.u) = 0.8+0.28.Y-0.04,Y~ 

3a. S(s) = 0.01+0.0058.~+0.0008.~~ 

H(X) = 0.8+0.464.u-0.064.X’. (32) 

Figure 5 illustrates the Stanton number S(X) dis- 

tributions along the inner surface of the wall. In Figs. 

6 and 7 the results for different values of Stanton 

number S(.v) and of H(.u) are plotted for emissivities 

of 1 and 0.1 and dimensionless absorptivity k = 0.0 

and 0.1. For the same uniform external heat fIux, an 

increase in the Stanton number (examples 3 + 3a) 

tends to decrease the axial temperature distribution 

along the tube and increase the axial gas temperature 

gradient (Figs. 6(c) and 7(c)). The present results 

show that this parameter dots not have a significant 

effect for c = I .O but becomes quite large for an emiss- 

ivity of 0. I. Also, it has a more conspicuous effect near 

the outlet reservoir. Tables 4 and 5 show the set of 

dimensionless numbers and physical quantities which 

were used in this calculation. 

In refs. [l-3, 8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIO], and the previous section, the 

overall problem treated by various calculations and 

analyses for a flow system with transparent and radi- 

ation gas refers only to heated tubes. In this section 

of our paper, we extend the consideration to certain 

specific results for cooled tubes. These illustrate the 

influence of (i) the inlet and exit reservoir tempera- 

tures, (ii) the non-uniformity of a (negative) heat flux, 

(iii) the radiative properties of the radiation gas and 

(a) 2.2 
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2.0 

3 
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1.8 
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(b) 

II 1 2 3 4 5 

x 
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I I I I I I 
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X 

FIG 6. (a) Effect of Iength-depetldent Stanton number S(s) 

on the telnperature distributions in the tube wall. k = 0.0; 

E = I.0 (transparent gas). (b) Effect of length-depe~ldent 

Stanton number S(s) on the temperature distributions in the 

tube wall. k = 0.1 ; I: = 1.0 (radiation gas). (c) Effect of 

length-dependent Stanton number S(x) on the temperature 

distributions in the gas. k = 0.0 and 0. I ; E = 1 .O. 
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FIG. 7. (a) Elect of length-dependent Stanton number S(.y) on the temperature distributions in the tube 

wall. k = 0.0; E = 0.1 (transparent gas). (b) Erect of length-dependent Stanton number S(s) on the 

temperature distributions in the tube wall. k = 0. I ; i: = 0. I (radiation gas). (c) Effect of length-dependent 

Stanton number S(s) on the temperature distributions in the gas. k = 0.0 and 0. I ; i: = 0. I. 

Table 4. Effect on predictions of length-dependent Stanton number, for k = 0.0 and 0. I (E = I .O) (heated 

tube) 

I = 5 H = 0.X S = 0.01 t,,, = I,, = I.5 A = 0.85 

i: = 1.0 h = 0.0 E = I.0 i: = I.0 h- = 0.1 E= 1.1025 

i: ,,=o.o R=O.O s,=o.o i:p 1 = 0.075 R = 3.12 x IO a x,, = 0.025 
2 3 2a 3a 2 3 2a 3a 

l*(O) = I, I I .7660 I .7890 I .7202 I .7OY5 I.7192 I .7295 I.6961 I .6YOl 
I,, c = LCO I.7917 I .8276 I .7236 I .7075 I .7462 I .7662 I .7059 I .6Y54 
1, .C = ‘,.C I.5132 1.5051 I .5274 I .5305 1.5207 I.5155 I.5310 I .5336 
Ah [%I 0.01 0.113 0.05 0.074 0.2 I 0.284 0.09 0.058 

Table 5. Etkct on predictions of length-dependent Stanton number, for k = 0.0 and 0. I (I: = I .O) (heated 

tube) 

I= 5 H = 0.X S = 0.01 t,,, = I,,, = 1.5 A = 0.85 

t; = 0. I k = 0.0 E = I.0 1: = 0.1 k = 0.1 E= 1.575 

>:P.\ = 0.0 R = 0.0 c,, = 0.0 ‘a +., = 0.075 R = 3.12 x IO- E,, = 0.025 
2 3 2a 3a 2 3 2a 3a 

f, (0) = r,\., I .9638 I .Y775 I .Y305 1 .Y225 1.9378 I .Y433 I.9217 I.9169 
L, = f,(L) 2.0516 2.1361 I .896Y I.8618 2.022 I 2.0886 I .8Y73 1.8654 
(LX = f,C I.5177 I .506Y 1.5331 I .5358 1.5314 I .5249 I.541 I I .5430 
Ah [?‘“I 0.348 0.51 0.248 0.335 0.382 0.41 0.137 0.095 
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Table 6. Input data and predicted exit temperatures for runs l-3 (cooled tube) 

I= 5 H = 8 S = 0.01 E = 1.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = 0.0 

t,,, = 2.0 E = I.0 A4 = 0.0 c = 0.0 

Run L(0) = l,., Ab [“/u] 
I I .8369 t,,, = = 2.0 t,,, t,,, = t,,, = 0.776 I~,, = 1.9606 0.0 
2 I .8388 I,,, = = 2.0 t,,, t,,, = I .40 t,,, = I .9665 0.0 

t, e = 1.2535 
3 I .6346 t,, = 1.8 t,, = t,* c = 0.736 t,,, = I .9539 0.0 

t,, = 2.0 

(iv) the influence of tube length on the wall and gas 

temperature distribution. Tables 6-8 show the set of 

dimensionless numbers and physical quantities which 

are used in the calculation. The initial and final wall 

and radiation gas temperatures, all calculated numeri- 

cally, are also presented there. Also, in Tables 68 is 

an expression of the accuracy of the method Ab[%]. 

i5fltict of’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinlet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAund erit reservoir toryxwtures 

Figure 8 shows the effect of varying the inlet and 

exit reservoir temperature in a duct of length .Y = 5. 

Solutions were obtained for a transparent gas and 

uniform (negative) heat flux. For a tixed inlet gas 

temperature t,,, = 2.0 the inlet reservoir temperature 

r,,, was set equal to t,,, (for runs 1 and 2) while for run 

3 it was assumed to be I .8. Also. for runs 1 and 3 the 

exit reservoir temperatures were set equal to the exit 

wall temperature (t,., = t,,,). For run 2 it was assumed 

that the exit reservoir temperature t,,, = 1.40 was a 

parameter independent of the exit gas and wall tem- 

Table 7. Input data and predicted exit temperatures for runs 
47 (cooled tube) 

I = 5 H = 0.8 S= 0.01 i: = I.0 
A = I.18 I,,, = I,,, = 2.0 

k = 0.0 R = 0.0 k = 0.1 R = 3.125 x 10m4 
E = I .O i:,,\ = 0.0 E = I. 1025 c,,\ = 0.075 

Run 4 
M 0.0 0.0’ 

6 7 
0.20 PO.20 

c 0.0 0.0 -0.04 0.04 

L(0) = t,, I .8499 I .9201 I.9111 I .9293 

1, c = I, (0 I .8284 I .9080 I .8935 I .9222 

t,., = 1,s I .9794 1.9879 1.9837 1.9919 
Ah [o/o] 0.0 1.78 I .93 1.64 

Table 8. Input data and predicted exit temperatures for runs 
8 I I (cooled tube) 

H = 0.8 S= 0.01 c = I.0 A = 1.18 

E=l.21 /,,=t,.,= 1.5 k=0.2 

i:p., = 0.15 R = 6.25x IO-’ 

Run 8 9 10 II 
I=5 /=8 I= IO I= 16 

L(0) = f,., 1.3284 I .3275 1.3275 I .3275 

r,., = t, (0 I .2936 I .2593 I .2359 I.1621 

I,., = t,, I .4727 I .449l I .4328 1.3820 
Ah [X] I .65 2.62 3.25 5.11 

peratures. As shown in Fig. 8 the initial portion of the 

wall-temperature curve is nearly independent of the 

exit reservoir temperature because the exit reservoir is 

too far away to influence the region near the tube inlet 

]I, 4. 

Figure 9 shows the wall and gas temperature dis- 

tributions for short tubes with various (negative) heat 

fluxes and for k = 0.0 and 0.1. When the absorptivity 

of the radiation gas is increased, the radiation-heat 

transfer becomes more efficient and hence the wall 

1.9 r E= 1.0 k=O 

0.9 - 

1.0 

: 0.8 
s 
P 

t 
l- 

x 

B = 1.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk=O / 

/ 

Pure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconvection /  

\’ 3, 

2 
P 0.6 - 

-0 
mi 

T 
‘? 0.4 - 
M 

.z 

FIG. 8. Effect of inlet and exit reservoir temperature on the 
temperature distributions in the tube wall and gas. c = I .O: 

k = 0.0 (transparent gas). 
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FIG. 9. Effect of dimensionless (non-uniform) heat fluxes 

on the temperature distributions in the tube wall and gas. 

c = 1 .O : X = 0.0 and 0. I, 

temperature distributions incrcasc. Because of the 

large radiation being transferred to the wall, the 

curves of radiation gas temperature fall far below the 

gas teinperature for a lranspar~n~ gas. 

The influence of dimensionless tube length I for a 

wall emissivity E = I .O and dimensionless gas absorp- 

tivity k = 0.2 on wall tube and radiation gas tem- 

pcraturc distributions is shown in Fig. IO. Howcvcr, 

as 1 increases beyond about 16 diameters convergence 

becomes problematical due to the highly non-linear 

form of the equations. This displays itself in pseudo- 

solutions which are quite inconsistent with the down- 

stream thermal boundary conditions used as a check 

during iteration. In fact, the above length itsell 

appears to be dependent on temperature and dimen- 

sionless gas absorptivity k, and we have quoted the 

value relevant to Fig. IO. 

CONCLUSIONS AND FUTURE WORK 

In this paper we have presented a coinprehensive 

treatment of the problem of combined radiation and 

..* 
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1.2 

I.1 

1.0 

0.9 

0.8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.7 1 
I I I I I 

0 0.2 0.4  0.6 0.8 1.0 

XlL 

FE IO. Effect of tube length on the lube wall and gas 

tcmpernture distributions. y(.x) = const ; J: = I .O: k  = 0.2. 

convection for fluid flowing in a tube. In three impor- 

tant regards we have extended the analysis of Siegel 

and Perhnutter [I, 21. However, we have retained 

both the general features of their approach, and for 

convenience of comparison, their notation. 

Our analysis now includes (a) the cffcct of non- 

trans~drenoy of the gas, parameter li, fb) length- 

depcndcnt heat fluxes. up to a parabolic distribution 

and fc) the application to cooled tubes. 

Other features arc an overall energy balance check 

(rarely above 1% error). and a flcxiblc accom- 

modation of convection. The latter means that either 

a dimensionless-group type expression, or even a CFD 

(computational fluid dynamics) approach could be 

used for the local convective heat transfer. 

For the future. we also intend to study the effects of 

the various contributing factors to the overall energy 

balance, and to compare these with corresponding 

considerations in the other methods such as Montc- 

Carlo or heat flux. The convergence problem should 

also bc investigated further. 
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