یکی از روش های آماری برای تجزیه و تحلیل داده های خام یک پژوهش می باشد که به محاسبه پارامترهای جامعه با استفاده از سرشماری تمامی عناصر جامعه می پردازد.
در آمار توصیفی از جدول آماری و نمودارهای آماری برای نشان داده نتایج و ویژگی های موجود در داده ها استفاده می شود.
توصیف داده ها در آمار توصیفی شامل مراحل زیر می باشد:
شاخص های پراکندگی میزان پراکنش هر متغیر در اطراف میانگین می باشد. این شاخص به ما نشان می دهد که میزان پراکندگی داده ها در اطراف نقطه تمرکز تا چه اندازه می باشد. از جمله مهم ترین این شاخص ها، انحراف استاندارد، واریانس، ضریت تغییرات و دامنه تغییرات می باشد. اصطلاحاتی که در آمار توصیفی بکار می رود شامل:
کمیت های مختلفی تعریف شده اند که بر حسب نیاز می توانند بصورت کمی، جامعه مورد مطالعه را معرفی نمایند. برخی از این کمیت ها محل تمرکز داده ها را نشان می دهند که تحت عنوان شاخص های مرکزی نامیده می شوند. با توجه به اینکه در محاسبات آماری بایستی ویژگی ها و موقعیت کلی داده ها مشخص شود، لازم است تا شاخص های مرکزی محاسبه گردد. از جمله مهم ترین این شاخص های مرکزی، نما، میانه و میانگین است که دارای کاربردهای خاصی هستند. زمانی یک شاخص مرکزی دارای ارزش است که ویژگی های زیر را داشته باشد:
هدف از ترسیم جداول توزیع فراوانی، سازمان دهی به داده ها بصورت طبقاتی همراه با فراوانی می باشد. در این جداول لازم است تا تعداد و حجم طبقات با یکسری فرمول هایی محاسبه شده و در نهایت جدول توزیع رسم شود. از عناوین مهم این جداول:
به ویژگی های مربوط به فردی از جامعه که مورد اندازهگیری قرار میگیرد، یک صفت متغیر یا به اختصار یک متغیر (Variable) گفته می شود. در نتیجه می تواند گفت که دادهها (Data) مقادیر اندازهگیری شده متغیرها بشمار می رود..
بعد از اینکه متغییرها را شناسایی نمودیم ، به سراغ اندازه گیری آن ها می رویم. با توجه به اینکه اندازه گیری متغییرها با یکدیگر متفاوت است، از این نظر به چهار دسته تقسیم می شوند :
نوع قیاس | ملاک |
---|---|
مقیاس اسمی | ویژگیهای مشترک افراد یا رویدادها مبتنی |
مقیاس ترتیبی | افراد یا اشیا از لحاظ صفت ویژه، رتبهبندی میکند |
مقیاس فاصله ای | ترتیب اشیا و فاصله بین آنها را مشخص میسازد. |
مقیاس نسبتی | دقیقترین مقیاس اندازهگیری، نسبتها در نقاط مختلف این نوع مقیاس، قابل مقایسهاند. |
به منظور تعیین نوع و رابطه یک متغیر از ضریب همبستگی با متغییر دیگر (Correlation Coefficient) استفاده می شود. محاسبه ضرایب همبستگی تا حدود زیادی متاثر از مقیاس اندازه گیری متغیر ها است. بسته به نوع متغیر ها ضریب همبستگی میتواند یکی از حالتهای زیر را داشته باشد.
برای هر کدام از حالتهای بالا ضرایب همبستگی متفاوتی وجود دارند و محاسبه آنها در نرم افزار های spss ، lisrel و R امکان پذیراست.شما عزیزان می توانید انجام تحلیل آماری پروژه های مختلف خود،انجام پایان نامه ارشد و انجام پایان نامه دکتری،مقاله و …را از هر جای ایران به کارشناسان ما بسپارید تا در سریعترین زمان ممکن آن را تحویل شما دهند. در واقع بخش های مربوط به « روش تحقیق » و « فصول سوم تا پنجم پایان نامه ها » نیازمند بکارگیری نرم افزارهای آماری همچون SPSS و LISREL و AMOS و EVIEWS و STATA هستند که همکاران ما با داشتن دانش لازم قادرند آن را برای شما انجام دهند.
چنانچه دو متغیر در مقیاس های فاصله یا نسبی اندازه گیری شده باشند، می توان برای تعیین رابطه بین آنها از ضریب همبستگی گشتاوری پیرسون استفاده کرد.ولی اگر در تمام مفروضات ضریب همبستگی پیرسون صادق نباشد، نمی توان از آنها استفاده کرد و به جای آن می توان از روش های دیگری مانند ضریب همبستگی دو رشته ای، و یا ضریب تتراکوریک استفاده کرد.
در تحقیقاتی که در سطح مقیاس های اسمی و رتبه ای انجام می گیرد، باید از روش های دیگری برای محاسبۀ همبستگی بین دو متغیر استفاده کرد. برخی از این روش ها عبارتند از: ضریب همبستگی فی، ضریب کریمر ، ضریب کاپا و ضریب لامبادا جهت تحقیقات اسمی و ضریب همبستگی اسپیرمن، ضریب کندال و آماره گاما برای تحقیقات ترتیبی.
رگراسیون (Regression) روشی برای مطالعه سهم یک یا چند متغیر مستقل در پیش بینی متغیر وابسته است. از تحلیل رگراسیون هم در تحقیقات توصیفی (غیر آزمایشی) و هم در تحقیقات آزمایشی میتوان استفاده کرد. در حقیقت تحلیل رگرسیونی فن و تکنیکی آماری برای بررسی و مدل سازی ارتباط بین متغیرها است. رگرسیون تقریباً در هر زمینه ای از جمله مهندسی، فیزیک، اقتصاد، مدیریت، علوم زیستی، بیولوژی و علوم اجتماعی برای برآورد و پیشبینی مورد نیاز است .می توان گفت تحلیل رگرسیونی، پرکاربردترین روش در بین تکنیک های آماری است. با توجه به نوع تحقیق و متغیرهای آن روش متنوعی برای تحلیل رگراسیون وجود دارد که برخی از آنها عبارتند از : رگراسیون خطی (با سه راهبرد همزمان ، گام به گام ، سلسله مراتبی) ، رگراسیون انحنایی ، رگراسیون لوجیستیک و تحلیل کواریانس.
از جمله تحلیلهای همبستگی ، تحلیل ماتریس کواریانس یا ماتریس همبستگی است. دو نوع از معروفترین این تحلیلها عبارتند از : مدل تحلیل عاملی برای پی بردن به متغیرهای زیر بنایی یک پدیده در دو دسته اکتشافی و تاییدی و مدل معادلات ساختاری برای بررسی روابط علی بین متغیرها.